purkinje cell
Recently Published Documents


TOTAL DOCUMENTS

1822
(FIVE YEARS 179)

H-INDEX

108
(FIVE YEARS 7)

Author(s):  
Xiaoshan Huang ◽  
Shenquan Liu ◽  
Pan Meng ◽  
Jie Zang

This paper mainly studied firing patterns and related bifurcations in the Purkinje cell dendrite model. Based on the methods of equivalent potentials and time scale analysis, the initial six-dimensional (6D) dendrite model is reduced to a 3D form to facilitate the calculation. We numerically show that the dendrite model could exhibit period-adding bifurcation and four bursting patterns for several vital parameters. Then the bifurcation mechanisms and transition of these four bursting patterns are discussed by phase plane analysis, and two-parameter bifurcation analysis of the fast subsystem, respectively. Moreover, we computed the first Lyapunov coefficient to determine the stability of Hopf bifurcation. Ultimately, we analyzed the codimension-two bifurcation of the whole system and gave a detailed theoretical derivation of the Bogdanov–Takens bifurcation.


2022 ◽  
Author(s):  
Cheryl Brandenburg ◽  
Gene J Blatt

Genetic variance in ASD is often associated with mechanisms that broadly fall into the category of neuroplasticity. Parvalbumin positive neurons and their surrounding perineuronal nets (PNNs) are important factors in critical period plasticity and have both been implicated in ASD. PNNs are found in high density within output structures of the cerebellum and basal ganglia, two regions that are densely connected to many other brain areas and have the potential to participate in the diverse array of symptoms present in an ASD diagnosis. The dentate nucleus and globus pallidus were therefore assessed for differences in PNN expression in human postmortem ASD brain tissue. While Purkinje cell loss is a consistent neuropathological finding in ASD, in this cohort, the Purkinje cell targets within the dentate nucleus did not show differences in number of cells with or without a PNN. However, the density of parvalbumin positive neurons with a PNN were significantly reduced in the globus pallidus internus and externus of ASD cases, which was not dependent on seizure status. It is unclear whether these alterations manifest during development or are a consequence of activity-dependent mechanisms that lead to altered network dynamics later in life.


2021 ◽  
Vol 15 ◽  
Author(s):  
Brenda Toscano Márquez ◽  
Anna A. Cook ◽  
Max Rice ◽  
Alexia Smileski ◽  
Kristen Vieira-Lomasney ◽  
...  

Patterned cell death is a common feature of many neurodegenerative diseases. In patients with autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) and mouse models of ARSACS, it has been observed that Purkinje cells in anterior cerebellar vermis are vulnerable to degeneration while those in posterior vermis are resilient. Purkinje cells are known to express certain molecules in a highly stereotyped, patterned manner across the cerebellum. One patterned molecule is zebrin, which is expressed in distinctive stripes across the cerebellar cortex. The different zones delineated by the expression pattern of zebrin and other patterned molecules have been implicated in the patterning of Purkinje cell death, raising the question of whether they contribute to cell death in ARSACS. We found that zebrin patterning appears normal prior to disease onset in Sacs–/– mice, suggesting that zebrin-positive and -negative Purkinje cell zones develop normally. We next observed that zebrin-negative Purkinje cells in anterior lobule III were preferentially susceptible to cell death, while anterior zebrin-positive cells and posterior zebrin-negative and -positive cells remained resilient even at late disease stages. The patterning of Purkinje cell innervation to the target neurons in the cerebellar nuclei (CN) showed a similar pattern of loss: neurons in the anterior CN, where inputs are predominantly zebrin-negative, displayed a loss of Purkinje cell innervation. In contrast, neurons in the posterior CN, which is innervated by both zebrin-negative and -positive puncta, had normal innervation. These results suggest that the location and the molecular identity of Purkinje cells determine their susceptibility to cell death in ARSACS.


2021 ◽  
pp. 173-205
Author(s):  
Constantino Sotelo ◽  
Ferdinando Rossi
Keyword(s):  

2021 ◽  
Author(s):  
George garinis ◽  
Katerina Gkirtzimanaki ◽  
Edisona Tsakani ◽  
Ermioni Arvanitaki ◽  
Electra Nenedaki ◽  
...  

Abstract Neurodegenerative disorders are a growing challenge for the elderly yet their etiology remains elusive. Here, we show that persistent DNA damage in tissue-resident macrophages carrying an ERCC1-XPF DNA repair defect leads to cerebellar ataxia in mice. We find that cytoplasmic chromatin fragments accumulate in the brain microglia of progeroid and naturally aged mice stimulating a type-I Interferon (IFN-I) response and are then packaged in extracellular vesicles (EVs) leading to Purkinje cell death and neurodegeneration in Er1CX/− animals. To reduce neuroinflammation, we developed an EV-based strategy to deliver recombinant DNase I specifically in inflamed Er1CX/− microglia in vivo. Our approach rapidly removes dsDNAs from the cytoplasm of microglial cells and in secreted EVs; it alleviates the IFN-I response, decreases Purkinje cell death and delays the onset of neuronal decline in Er1CX/− animals. Thus, brain microglia causally contribute to neurodegeneration allowing for the development of promising therapeutic strategies against age-related neuroinflammation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rin Khang ◽  
Areum Jo ◽  
Hojin Kang ◽  
Hanna Kim ◽  
Eunsang Kwag ◽  
...  

AbstractAlthough Krüppel-associated box domain-containing zinc-finger proteins (K-ZNFs) may be associated with sophisticated gene regulation in higher organisms, the physiological functions of most K-ZNFs remain unknown. The Zfp212 protein was highly conserved in mammals and abundant in the brain; it was mainly expressed in the cerebellum (Cb). Zfp212 (mouse homolog of human ZNF212) knockout (Zfp212-KO) mice showed a reduction in survival rate compared to wild-type mice after 20 months of age. GABAergic Purkinje cell degeneration in the Cb and aberrant locomotion were observed in adult Zfp212-KO mice. To identify genes related to the ataxia-like phenotype of Zfp212-KO mice, 39 ataxia-associated genes in the Cb were monitored. Substantial alterations in the expression of ataxin 10, protein phosphatase 2 regulatory subunit beta, protein kinase C gamma, and phospholipase D3 (Pld3) were observed. Among them, Pld3 alone was tightly regulated by Flag-tagged ZNF212 overexpression or Zfp212 knockdown in the HT22 cell line. The Cyclic Amplification and Selection of Targets assay identified the TATTTC sequence as a recognition motif of ZNF212, and these motifs occurred in both human and mouse PLD3 gene promoters. Adeno-associated virus-mediated introduction of human ZNF212 into the Cb of 3-week-old Zfp212-KO mice prevented Purkinje cell death and motor behavioral deficits. We confirmed the reduction of Zfp212 and Pld3 in the Cb of an alcohol-induced cerebellar degeneration mouse model, suggesting that the ZNF212–PLD3 relationship is important for Purkinje cell survival.


2021 ◽  
Vol 15 ◽  
Author(s):  
Bing-Xue Li ◽  
Hua Jin ◽  
Guang-Jian Zhang ◽  
Li-Na Cui ◽  
Chun-Ping Chu ◽  
...  

Noradrenaline is an important neuromodulator in the cerebellum. We previously found that noradrenaline depressed cerebellar Purkinje cell activity and climbing fiber–Purkinje cell synaptic transmission in vivo in mice. In this study, we investigated the effect of noradrenaline on the facial stimulation-evoked cerebellar cortical mossy fiber–granule cell synaptic transmission in urethane-anesthetized mice. In the presence of a γ-aminobutyrateA (GABAA) receptor antagonist, air-puff stimulation of the ipsilateral whisker pad evoked mossy fiber–granule cell synaptic transmission in the cerebellar granular layer, which expressed stimulus onset response, N1 and stimulus offset response, N2. Cerebellar surface perfusion of 25 μM noradrenaline induced decreases in the amplitude and area under the curve of N1 and N2, accompanied by an increase in the N2/N1 ratio. In the presence of a GABAA receptor blocker, noradrenaline induced a concentration-dependent decrease in the amplitude of N1, with a half-maximal inhibitory concentration of 25.45 μM. The noradrenaline-induced depression of the facial stimulation-evoked mossy fiber–granule cell synaptic transmission was reversed by additional application of an alpha-adrenergic receptor antagonist or an alpha-2 adrenergic receptor antagonist, but not by a beta-adrenergic receptor antagonist or an alpha-1 adrenergic receptor antagonist. Moreover, application of an alpha-2 adrenergic receptor agonist, UK14304, significantly decreased the synaptic response and prevented the noradrenaline-induced depression. Our results indicate that noradrenaline depresses facial stimulation-evoked mossy fiber–granule cell synaptic transmission via the alpha-2 adrenergic receptor in vivo in mice, suggesting that noradrenaline regulates sensory information integration and synaptic transmission in the cerebellar cortical granular layer.


Sign in / Sign up

Export Citation Format

Share Document