scholarly journals Foundations of neural networks, fuzzy systems, and knowledge engineering

1997 ◽  
Vol 33 (7) ◽  
pp. 136 ◽  
2013 ◽  
Vol 58 (3) ◽  
pp. 871-875
Author(s):  
A. Herberg

Abstract This article outlines a methodology of modeling self-induced vibrations that occur in the course of machining of metal objects, i.e. when shaping casting patterns on CNC machining centers. The modeling process presented here is based on an algorithm that makes use of local model fuzzy-neural networks. The algorithm falls back on the advantages of fuzzy systems with Takagi-Sugeno-Kanga (TSK) consequences and neural networks with auxiliary modules that help optimize and shorten the time needed to identify the best possible network structure. The modeling of self-induced vibrations allows analyzing how the vibrations come into being. This in turn makes it possible to develop effective ways of eliminating these vibrations and, ultimately, designing a practical control system that would dispose of the vibrations altogether.


2003 ◽  
Vol 10 (4) ◽  
pp. 319-331
Author(s):  
X.Z. Gao ◽  
S.J. Ovaska

Author(s):  
PETR MUSÍLEK ◽  
MADAN M. GUPTA

Measurement ◽  
2019 ◽  
Vol 135 ◽  
pp. 47-60 ◽  
Author(s):  
K.H.S.M. Sampath ◽  
M.S.A. Perera ◽  
P.G. Ranjith ◽  
S.K. Matthai ◽  
X. Tao ◽  
...  

2007 ◽  
Vol 20 (2) ◽  
pp. 239-247 ◽  
Author(s):  
Xiao-kang Su ◽  
Guang-ming Zeng ◽  
Guo-he Huang ◽  
Jian-bing Li ◽  
Jie Liang ◽  
...  

Author(s):  
Chen-Sen Ouyang

Neuro-fuzzy modeling is a computing paradigm of soft computing and very efficient for system modeling problems. It integrates two well-known modeling approaches of neural networks and fuzzy systems, and therefore possesses advantages of them, i.e., learning capability, robustness, human-like reasoning, and high understandability. Up to now, many approaches have been proposed for neuro-fuzzy modeling. However, it still exists many problems need to be solved. In this chapter, the authors firstly give an introduction to neuro-fuzzy system modeling. Secondly, some basic concepts of neural networks, fuzzy systems, and neuro-fuzzy systems are introduced. Also, they review and discuss some important literatures about neuro-fuzzy modeling. Thirdly, the issue for solving two most important problems of neuro-fuzzy modeling is considered, i.e., structure identification and parameter identification. Therefore, the authors present two approaches to solve these two problems, respectively. Fourthly, the future and emerging trends of neuro-fuzzy modeling is discussed. Besides, the possible research issues about neuro-fuzzy modeling are suggested. Finally, the authors give a conclusion.


Sign in / Sign up

Export Citation Format

Share Document