Modeling of Self-Induced Vibrations that Occur During the Machining Process of Casting Patterns with the Use of The Fuzzy-Neural Networks Method

2013 ◽  
Vol 58 (3) ◽  
pp. 871-875
Author(s):  
A. Herberg

Abstract This article outlines a methodology of modeling self-induced vibrations that occur in the course of machining of metal objects, i.e. when shaping casting patterns on CNC machining centers. The modeling process presented here is based on an algorithm that makes use of local model fuzzy-neural networks. The algorithm falls back on the advantages of fuzzy systems with Takagi-Sugeno-Kanga (TSK) consequences and neural networks with auxiliary modules that help optimize and shorten the time needed to identify the best possible network structure. The modeling of self-induced vibrations allows analyzing how the vibrations come into being. This in turn makes it possible to develop effective ways of eliminating these vibrations and, ultimately, designing a practical control system that would dispose of the vibrations altogether.

2012 ◽  
Vol 3 (3) ◽  
pp. 179-188 ◽  
Author(s):  
Sevil Ahmed ◽  
Nikola Shakev ◽  
Andon Topalov ◽  
Kostadin Shiev ◽  
Okyay Kaynak

Author(s):  
Danuta Rutkowska ◽  
◽  
Yoichi Hayashi ◽  

Two major approaches to neuro-fuzzy systems are distinguished in the paper. The previous one refers to fuzzy neural networks, which are neural networks with fuzzy signals, and/or fuzzy weights, as well as fuzzy transfer functions. The latter approach concerns neuro-fuzzy systems in the form of multilayer feed-forward networks, which differ from standard neural networks, because elements of particular layers conduct different operations than standard neurons. These structures are neural network representations of fuzzy systems and they are also called connectionist models of fuzzy systems, adaptive fuzzy systems, fuzzy inference neural networks, etc. Two different defuzzifiers, applied to fuzzy systems, are in focus of the paper. Center-of-sums method is an example of parametric defuzzification. Standard neural networks a defuzzifier presents nonparametric approach to defuzzification. For both cases learning algorithms of neuro-fuzzy systems are proposed. These algorithms take a form of recursions derived based on the momentum back-propagation method. Computer simulation demonstrates a comparison between performance of neuro-fuzzy systems with the parametric and nonparametric defuzzifier. Truck backer-upper control problem has been used to illustrate the systems performance. Conclusions concerning the simulation results are summarized. The paper pertains many references on neuro-fuzzy systems, especially selected publications of Czogala, whom it is dedicated.


Sign in / Sign up

Export Citation Format

Share Document