Influence of high pressure on the specific heat of amorphous polymers at low temperatures

2002 ◽  
Vol 316-317 ◽  
pp. 535-538
Author(s):  
M. Jäckel ◽  
R. Geilenkeuser ◽  
A. Gladun
2007 ◽  
Vol 62 (7) ◽  
pp. 977-981 ◽  
Author(s):  
Ladislav Havela ◽  
Khrystyna Miliyanchuk ◽  
Laura C. J. Pereira ◽  
Eva Šantavá

Abstract U2Co2InH1.9, synthesized by high-pressure hydrogenation of U2Co2In, crystallizes in the tetragonal structure similar to the parent compound, expanded by 8.4 %. Although U2Co2In is a weak paramagnet, its hydride shows properties suggesting a proximity to the magnetic order. Its magnetic susceptibility exhibits a maximum at T = 2.4 K, ascribed to spin fluctuations. Magnetization at low temperatures goes through a metamagnetic transition between 2 - 3 T. The specific heat characteristics, with a pronounced upturn of Cp/T vs. T at low temperatures which can be fitted using an additional −T 1/2 term, resemble the behaviour of U2Co2Sn. The γ coefficient of the electronic specific heat, reaching 244 mJ mol−1 K−2, is gradually suppressed by high magnetic fields.


1978 ◽  
Vol 56 (10) ◽  
pp. 1390-1394
Author(s):  
K. P. Srivastava

An extensive numerical study on specific heat at constant volume (Cv) for ordered and isotopically disordered lattices has been made. Cv at various temperatures for ordered and disordered linear and two-dimensional lattices have been compared and no appreciable difference in Cv between these two structures has been observed. Effect of concentration of light atoms on Cv for three-dimensional isotopically disordered lattices has also been shown.In spite of taking next-nearest-neighbour interaction into account, no substantial change in Cv between the ordered and isotopically disordered linear lattices has been found. It is shown that the low lying modes contribute substantially at low temperatures.


1979 ◽  
Vol 13 (7) ◽  
pp. 573-575 ◽  
Author(s):  
Hiroaki Wada ◽  
Koshiro Sakamoto

2014 ◽  
Vol 89 (5) ◽  
Author(s):  
Y. Zheng ◽  
Y. Wang ◽  
F. Hardy ◽  
A. E. Böhmer ◽  
T. Wolf ◽  
...  

Author(s):  
B. Eckert ◽  
H. J. Jodl ◽  
H. O. Albert ◽  
P. Foggi

Sign in / Sign up

Export Citation Format

Share Document