5759361 Cathodic protection system for a steel-reinforced concrete structure

1999 ◽  
Vol 21 (3) ◽  
pp. 244
Author(s):  
E Bennett John ◽  
R Pohto Gerald ◽  
A Mitchell Thomas
2011 ◽  
Vol 250-253 ◽  
pp. 2857-2860 ◽  
Author(s):  
Yu Zhuo Wang ◽  
Chuang Guo Fu

Prestressed steel reinforced concrete structure, compared with other concrete structure has its unique advantages. So it is mainly used in large span and conversion layers. With the popularization of this structure,more attention should be payed on fire resistance performance. On the basis of reasonable assume,two steps model is used as concrete high strength calculation model. Simplified intensity decreased curve is used as rebar,steel and prestressed. Two ultimate bearing capacity formulas of prestressed steel reinforced concrete beam are established. One is for the beam whose tensile area is under fire, the other is for the beam whose compression area is under fire. Prestressed steel reinforced concrete structure has both prestressed concrete structure’s advantages and steel reinforced concrete structure ’s advantage. Steel reinforced concrete is used to improve the bearing capacity of the structure. Prestressed steel is used to improve the ultimate state of structure’s performance during normal use. Thereby structure’s performance is better to play. There are many similarities between prestressed steel reinforced concrete structure and steel reinforced concrete structure about fire resistance performance. Because of prestressed steel reinforced concrete structure’s own characteristics, there are still many problems about fire resistance. This paper mainly presented bending terminal bearing capacity of prestressed steel reinforced concrete beam under fire. Established simplified formulae for calculation, it is meet the engineering accuracy requirement.


2013 ◽  
Vol 273 ◽  
pp. 492-495
Author(s):  
Min Huang

At present the reinforced concrete structure is one of the structures widely used. With China's rapid economic development and the improvement of people's living standard, the structural safety requirements are also getting higher and higher. Especially in the design in the structure of the modern housing, the ductility performance of the steel reinforced concrete structure becomes more and more important. This paper put forward the design basis aiming to study the steel structure ductility design, preventing early damage of the member in the role of the earthquake, and avoiding structure system appear undue damage.


2015 ◽  
Vol 1125 ◽  
pp. 350-354 ◽  
Author(s):  
Jin A Jeong ◽  
Chung Kuk Jin

This paper represents the experimental studies on the throwing power of sacrificial anode cathodic protection system applied to reinforced concrete piles in salt water condition by means of zinc anodes. Many previous studies show the effectiveness of sacrificial anode cathodic protection system, however, the major problem of sacrificial anode cathodic protection system is limited a distance to the point reaching protection current from the anode in high resistivity environments such as concrete, etc. In case of concrete pile in sea water condition, it should be combined submerged zone, tidal zone, splash zone, and atmospheric zone. In this study, the cathodic protection current by zinc sacrificial anodes was limited to scores of centimeters above the water line with tidal, depending on the concrete resistivity. Experimental tests were carried out on pile type reinforced concrete specimens with the change of water level. The test factors were corrosion and protection potential, current, and 4 hour depolarization potential. As a result of tests, cathodic protection current by zinc sacrificial anode was influenced up to about 10cm above the water line, and high resistivity areas such as atmospheric zone could not be protected with this system.


Sign in / Sign up

Export Citation Format

Share Document