Calculation of Ultimate Bearing Capacity of Prestressed Steel Reinforced Concrete Structure under Fire

2011 ◽  
Vol 250-253 ◽  
pp. 2857-2860 ◽  
Author(s):  
Yu Zhuo Wang ◽  
Chuang Guo Fu

Prestressed steel reinforced concrete structure, compared with other concrete structure has its unique advantages. So it is mainly used in large span and conversion layers. With the popularization of this structure,more attention should be payed on fire resistance performance. On the basis of reasonable assume,two steps model is used as concrete high strength calculation model. Simplified intensity decreased curve is used as rebar,steel and prestressed. Two ultimate bearing capacity formulas of prestressed steel reinforced concrete beam are established. One is for the beam whose tensile area is under fire, the other is for the beam whose compression area is under fire. Prestressed steel reinforced concrete structure has both prestressed concrete structure’s advantages and steel reinforced concrete structure ’s advantage. Steel reinforced concrete is used to improve the bearing capacity of the structure. Prestressed steel is used to improve the ultimate state of structure’s performance during normal use. Thereby structure’s performance is better to play. There are many similarities between prestressed steel reinforced concrete structure and steel reinforced concrete structure about fire resistance performance. Because of prestressed steel reinforced concrete structure’s own characteristics, there are still many problems about fire resistance. This paper mainly presented bending terminal bearing capacity of prestressed steel reinforced concrete beam under fire. Established simplified formulae for calculation, it is meet the engineering accuracy requirement.

2012 ◽  
Vol 151 ◽  
pp. 286-290 ◽  
Author(s):  
Ke Wei Ding ◽  
Ai Yu Yang

With economic prosperity and social development, various kinds of unconventional concrete structure increases day by day, steel reinforced concrete structure has been widely used. The paper demonstrated the Hefei Yangtze-crossing Campaign Memorial Project, by comparing theoretical results with site monitoring data analysis results, summarized the variation of stress and strain distribution in the cantilever truss steel reinforced concrete beam structure. The main content of this paper introduced the study of steel reinforced concrete with the project to make conclusions that they would be significance to apply in the future similar projects for guidance and reference.


2011 ◽  
Vol 320 ◽  
pp. 450-455
Author(s):  
Jian He ◽  
Tong Wang ◽  
Huan Wang

As to reinforced concrete structure, the method to deal with the shortage of bearing capacity is one of the puzzles of structure engineering, so its reinforcement technology is a research hotspot. At present, although there are many reinforcing methods of existing structures, FRP is the more widely used in engineering because of its efficiency, low cost, and beauty. The paper takes the strengthened reinforced concrete structure beam with FRP for example, bearing capacity of normal section, the shear bearing capacity and cohesiveness is tested, and bearing performance for strengthening the strengthened reinforced concrete beam with FRP is analyzed.


2015 ◽  
Vol 754-755 ◽  
pp. 373-377 ◽  
Author(s):  
Mustaqqim Abdul Rahim ◽  
Zuhayr Md Ghazaly ◽  
Muhammad Azizi Azizan ◽  
Fazdliel Aswad Ibrahim ◽  
Norlia Mohamad Ibrahim ◽  
...  

In the normal practice in the reinforced concrete design, the main reinforcement steel bar and links was used to fabricate the concrete structure. However new materials such as steel fiber has been introduced as the reinforcement to the reinforced concrete structure [1]. Nowadays, the application of fiber in concrete increase slightly as an engineering material demands. Fibers have distinctive of geometry, size and material. The characteristics and properties of fiber influence the properties concrete. Steel, glass and synthetic fibers were used in concrete in 1960s because of the difficulty to handle the asbestos fiber [2].


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xiao Guo ◽  
Hongwei Wang ◽  
Kaizhong Xie ◽  
Tuo Shi ◽  
Dan Yu

In order to study the influence of corrosion rate and shear span ratio on reinforced concrete beam, a numerical analysis method of corroded reinforced concrete beam was put forward. Bond-slip relationship formula between reinforcement and concrete was suggested. A three-dimensional finite element model of corroded reinforced concrete beam was established. Calculation method of ultimate bearing capacity for reinforced concrete beam was suggested. Ultimate bearing capacity experiment on 14 corroded reinforced concrete beams with different corrosion rates and shear span ratios was carried out. Numerical analysis results and experimental results were compared and analyzed. The results show that, for reinforced concrete beams with different corrosion rates and shear span ratios, load-deflection curve can be divided into elasticity stage and plasticity stage. With the increase of corrosion rate and shear span ratio, ultimate bearing capacity of corroded reinforced concrete beam decreased. When shear span ratio was 3.0, if corrosion rate increased by 1%, experimental value of ultimate bearing capacity decreased by 1.002 kN. When shear span ratio was 2.4, if corrosion rate increased by 1%, experimental value of ultimate bearing capacity decreased by 1.849 kN. The numerical analysis method put forward in this paper was feasible, and the suggested ultimate bearing capacity calculation method for reinforced concrete beam has a high accuracy.


2015 ◽  
Vol 729 ◽  
pp. 129-133
Author(s):  
Xue Song Luo ◽  
Chun Gan ◽  
Min Xu

Application of a very wide range of engineering and construction of concrete beam, generally by the concrete and steel components, plays an important role in civil engineering. The unit adopts the structure of what will maximize the load, is the key problem in the design of concrete beam. This paper analyzes the structural characteristics of the Steel Reinforced Concrete and the bearing capacity, the design of a new type of structure. Application of ANSYS software to carry on the numerical simulation to it, and the concrete materials with different strength grades were bearing contrast; through continuous optimization of steel and concrete structure, complete the optimal combination between material, find Steel Reinforced Concrete structure best, and eventually realize the reasonable design of concrete beam.


Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 589-603
Author(s):  
Khondaker Sakil Ahmed ◽  
Md Ahsan Habib ◽  
Md Farhan Asef

Author(s):  
S. O. Chepilko ◽  

Problems of taking into account nonlinear creep in steel- reinforced concrete beams are considered basing on the integral equation of viscous-elastic-plasticity of concrete. There has been obtained the resolving system of nonlinear integral equations, a linearization of this system has been carried out, its asymptotic solutions have been written out for the theory of elastic heredity case. The analysis of taking into account nonlinear creep has been performed compared with the linear creep equations and an instantaneous (short-term) loading allowing for concrete’s nonlinear diagram.


Sign in / Sign up

Export Citation Format

Share Document