Antimetastatic and antitumor effect of chemically modified glucans

2002 ◽  
Vol 38 (11) ◽  
pp. S43-S44
Author(s):  
T Korolenko
1989 ◽  
Vol 61 (01) ◽  
pp. 131-136 ◽  
Author(s):  
Richard A Harvey ◽  
Hugh C Kim ◽  
Jonathan Pincus ◽  
Stanley Z Trooskin ◽  
Josiah N Wilcox ◽  
...  

SummaryTissue plasminogen activator labeled with radioactive iodine (125I-tPA) was immobilized on vascular prostheses chemically modified with a thin coating of water-insoluble surfactant, tridodecylmethylammonium chloride (TDM AC). Surfactant- treated Dacron, polytetrafluoroethylene (PTFE), silastic, polyethylene and polyurethane bound appreciable amounts of 125I- tPA (5-30 μg 125I-tPA/cm2). Upon exposure to human plasma, the amount of 125I-tPA bound to the surface shows an initial drop during the first hour of incubation, followed by a slower, roughly exponential release with a t½ of appoximately 75 hours. Prostheses containing bound tPA show fibrinolytic activity as measured both by lysis of clots formed in vitro, and by hydrolysis of a synthetic polypeptide substrate. Prior to incubation in plasma, tPA bound to a polymer surface has an enzymic activity similar, if not identical to that of the native enzyme in buffered solution. However, exposure to plasma causes a decrease in the fibrinolytic activity of both bound tPA and enzyme released from the surface of the polymer. These data demonstrate that surfactant-treated prostheses can bind tPA, and that these chemically modified devices can act as a slow-release drug delivery system with the potential for reducing prosthesis-induced thromboembolism.


2019 ◽  
Author(s):  
I Flörkemeier ◽  
TN Steinhauer ◽  
MT van Mackelenbergh ◽  
B Clement ◽  
DO Bauerschlag

2012 ◽  
pp. 141208072802005
Author(s):  
Fabiano Ribeiro Cirano ◽  
ADRIANE TOGASHI ◽  
MARCIA MARQUES ◽  
FRANCISCO PUSTIGLIONI ◽  
LUIZ LIMA

Sign in / Sign up

Export Citation Format

Share Document