A modified B�cklund transformation and multi-soliton solution for the Boussinesq equation

Author(s):  
Y ZHANG
2012 ◽  
Vol 26 (07) ◽  
pp. 1250062 ◽  
Author(s):  
XIAO-LING GAI ◽  
YI-TIAN GAO ◽  
XIN YU ◽  
ZHI-YUAN SUN

Generalized (3+1)-dimensional Boussinesq equation is investigated in this paper. Through the dependent variable transformation and symbolic computation, the one- and two-soliton solutions are obtained. With the one-soliton solution, the coefficient effects in the soliton propagation process are investigated. Through analyzing the two-soliton solution, two kinds of two-soliton interactions are presented: (i) Two solitons merge into a bigger one whose amplitude increases but does not exceed the sum of the two at the moment of the collision; (ii) Two solitons can pass through each other, and their shapes keep unchanged with a phase shift after the separation. In addition, two kinds of analytic solutions are discussed: (i) "Amplitudes" of the two analytic solutions immediately turn to negative (positive) infinity after the "collision"; (ii) Two analytic solutions are fused into a higher peak (valley) at the moment of "collision", whose "amplitudes" change to negative (positive) infinity after the separation.


1996 ◽  
Vol 323 ◽  
pp. 65-78 ◽  
Author(s):  
R. S. Johnson

A two-dimensional Boussinesq equation, \[u_{tt} - u_{xx} + 3(u^2)_{xx} - u_{xxxx} - u_{yy} = 0,\] is introduced to describe the propagation of gravity waves on the surface of water, in particular the head-on collision of oblique waves. This equation combines the two-way propagation of the classical Boussinesq equation with the (weak) dependence on a second spatial variable, as occurs in the two-dimensional Korteweg-de Vries (2D KdV) (or KPII) equation. Exact and general solitary-wave, two-soliton and resonant solutions are obtained from the Hirota bilinear form of the equation. The existence of a distributed-soliton solution is investigated, but it is shown that this is not a possibility. However the connection with the classical 2D KdV equation (which does possess such a solution) is explored via a suitable parametric representation of the dispersion relation.A three-soliton solution is also constructed, but this exists only if an auxiliary constraint among the six parameters is satisfied; thus the two-dimensional Boussinesq equation is not one of the class of completely integrable equations, confirming the analysis of Hietarinta (1987). This constraint is automatically satisfied for the classical Boussinesq equation (which is completely integrable). Graphical reproductions of some of the solutions of the two-dimensional Boussinesq equations are also presented.


2015 ◽  
Vol 44 (2) ◽  
pp. 375-385 ◽  
Author(s):  
Lu Trong Khiem Nguyen

Sign in / Sign up

Export Citation Format

Share Document