An artificial neural network interpreter for transient thermography image data

1997 ◽  
Vol 30 (5) ◽  
pp. 291-295 ◽  
Author(s):  
M.B. Saintey ◽  
D.P. Almond
Author(s):  
Rosalia Arum Kumalasanti ◽  

Humans are social beings who depend on social interaction. Social interaction that is often used is communication. Communication is one of the bridges to connect social relations between humans. Communication can be delivered in two ways, namely verbal or nonverbal. Handwriting is an example of nonverbal communication using paper and writing utensils. Each individual's writing has its own uniqueness so that handwriting often becomes the character or characteristic of the author. The handwriting pattern usually becomes a character for the writer so that people who recognize the writing will easily guess the ownership of the related handwriting. However, handwriting is often used by irresponsible people in the form of handwriting falsification. The acts of writing falcification often occur in the workplace or even in the field of education. This is one of the driving factors for creating a reliable system in tracking someone's handwriting based on their ownership. In this study, we will discuss the identification of a person's handwriting based on their ownership. The output of this research is in the form of ID from the author and accuracy in the form of percentage of system reliability in identifying. The results of this study are expected to have a good impact on all parties, in order to minimize plagiarism. Identification of handwriting to be built consists of two main processes, namely the training phase and the testing phase. At the training stage, the handwritten image is subjected to several processes, namely threshold, wavelet conversion, and then will be trained using the Backpropagation Artificial Neural Network. In the testing phase, the process is the same as in the training phase, but at the end of the process, a comparison will be made between the image data that has been stored during training with a comparison image. Backpropagation ANN can work optimally if it is trained using input data that has determined the size, learning rate, parameters, and the number of nodes on the network. It is expected that the offered method can work optimally so that it produces an accurate percentage in order to minimize handwriting falcification.


2016 ◽  
Vol 6 (1) ◽  
pp. 30
Author(s):  
Nahdi Sabuari ◽  
Rizal Isnanto ◽  
Kusworo Adi

This research discusses about face detection and face recognition in an image. Face detection has only two classifications, i.e face and not face. Face recognition is compatible with some classifications of a number individuals who want to be recognized. Face detection and face recognition in thi study using Haar-Like Feature method and Artificial Neural Network Backpropagation. A method Haar-Like Feature used for detection and extraction in an image, because the clasification on this method showed success at used to detect image of the face. Artificial Neural Network Backpropagation is a training algorithm that is used to do training simulated on facial image data training stored in a database. This study uses Ms. Excel 2007 as database with 10 individual sample image, every image in each individuals having three distance with every range has four defferent light intensities, so that the data training stored in the database reached 120 data training. The results shows that the face detection and face recognition which is developed can recognize a face image with an average accuracy rate reaches 80,8% for each distance.


Author(s):  
Arthur Stepchenko

Remote sensing has been widely used to obtain land cover information using automated classification. Land cover is a measure of what is overlaying the surface of the earth. Accurate mapping of land cover on a regional scale is useful in such fields as precision agriculture or forest management and is one of the most important applications in remote sensing. In this study, multispectral MODIS Terra NDVI images and an artificial neural network (ANN) were used in land cover classification. Artificial neural network is a computing tool that is designed to simulate the way the human brain analyzes and process information. Artificial neural networks are one of the commonly applied machine learning algorithm, and they have become popular in the analysis of remotely sensed data, particularly in classification or feature extraction from image data more accurately than conventional method. This paper focuses on an automated classification system based on a pattern recognition neural network. Variational mode decomposition method is used as an image data pre-processing tool in this classification system. The result of this study will be land cover map.


2000 ◽  
Vol 25 (4) ◽  
pp. 325-325
Author(s):  
J.L.N. Roodenburg ◽  
H.J. Van Staveren ◽  
N.L.P. Van Veen ◽  
O.C. Speelman ◽  
J.M. Nauta ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 502-503
Author(s):  
Mohamed A. Gomha ◽  
Khaled Z. Sheir ◽  
Saeed Showky ◽  
Khaled Madbouly ◽  
Emad Elsobky ◽  
...  

1998 ◽  
Vol 49 (7) ◽  
pp. 717-722 ◽  
Author(s):  
M C M de Carvalho ◽  
M S Dougherty ◽  
A S Fowkes ◽  
M R Wardman

Sign in / Sign up

Export Citation Format

Share Document