Effect of rare earths on oxidation resistance of heat resistant steel

2010 ◽  
Vol 28 ◽  
pp. 489-491 ◽  
Author(s):  
Longmei WANG ◽  
Xiaojian DU ◽  
Yong GAN ◽  
Liu LIU ◽  
Xiaoning YE ◽  
...  
2021 ◽  
Author(s):  
Ziming BAO ◽  
Renheng HAN ◽  
Yanqing ZHU ◽  
Hong LI ◽  
Ning LI ◽  
...  

The research focuses on the high temperature oxidation resistance of martensitic heat-resistant steel. A new type of martensitic heat-resistant steel was developed with the addition of Al and Cu, and the oxidation behavior of the new martensitic heat-resistant steel at 650 °C and 700 °C was analyzed. The high temperature oxidation kinetics curves of new martensitic heat-resistant steel at 650 °C and 700 °C were determined and plotted by cyclic oxidation experiment and discontinuous weighing method. XRD technique was applied to qualitatively analyze the surface oxide of the material after oxidation. The surface and cross-section morphology of the material were observed by field emission scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), and the oxidation mechanism at high temperature was analyzed. The results show that the oxide film can be divided into two layers after oxidation at 650 ºC for 200 h. The outer oxide film is mainly composed of Fe and Cu oxides, and the inner oxide film is mainly composed of Al2O3, SiO2 and Cr2O3. After oxidation at 700 ºC for 200 h, the outer layer is mainly composed of Fe, Cu, Mn oxides, and the inner layer is mainly composed of Cr, Al and Si oxides. The addition of a small amount of Cu promotes the diffusion of Al and Si elements, facilitates the formation of Al2O3 and SiO2, and improves the high-temperature oxidation resistance of martensitic heat-resistant steel.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 176 ◽  
Author(s):  
Chang Gu ◽  
Ruizhuo Liu ◽  
Chengduo Wang ◽  
Yufu Sun ◽  
Shaojun Zhang

The ZG40Cr20Ni20Alx (x = 0, 1.76, 3.45, and 5.34) heat-resistant steel has been newly developed on the basis of HK40 steel for aggressive oxidizing environments. The results reveal that the Al greatly enhances the oxidation resistance of ZG40Cr20Ni20 steel at high temperatures. The mass gain of ZG40Cr20Ni20 upon oxidation at 1100 °C for 480 h is up to 103.6 mg/cm2, while the values for the steels containing 1.76 and 3.45 wt% Al are sharply decreased to 6.1 and 5.4 mg/cm2, respectively. Both of their matrix phases are still austenite, which is the same as that of ZG40Cr20Ni20. Their FeCr2O4 spinel oxide scales appear to be more stable under high oxygen partial pressure than that of ZG40Cr20Ni20, and the continuous Cr2O3 film appears between their matrix and spinel oxide. As for the steel with 5.34 wt% Al, the mass gain is only 1.1 mg/cm2. Its matrix is compared to those of austenite and ferrite, and the oxide scale is continuous Al2O3.


2018 ◽  
Vol 2018 (46) ◽  
pp. 34-37
Author(s):  
I. B. Ivasenko ◽  
◽  
O. R. Berehulyak ◽  
R. A. Vorobel ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document