Functional MRI of cognitive set-shifting using an oral version of the trail making test

NeuroImage ◽  
2000 ◽  
Vol 11 (5) ◽  
pp. S41
Author(s):  
Jorge Moll ◽  
Ricardo de Oliveira-Souza ◽  
Ivanei Edson Bramati ◽  
Flávia Paes ◽  
Fernando Cimini Cunha ◽  
...  
2000 ◽  
Vol 58 (3B) ◽  
pp. 826-829 ◽  
Author(s):  
RICARDO DE OLIVERA-SOUZA ◽  
JORGE MOLL ◽  
LEIGH J. PASSMAN ◽  
FERNANDO CIMINI CUNHA ◽  
FLÁVIA PAES ◽  
...  

We tested the hypothesis that Part B of the Trail Making Test (TMT) is a measure of cognitive set-shifting ability in 55 normal subjects with the conventional (written) TMT and a verbal adaptation, the "verbal TMT" (vTMT). The finding of a significant association between Parts B of TMT and vTMT (r = 0,59, p < 0,001), after correcting for age and education, supports the view that Part B of TMT is a valid measure of the ability to alternate between cognitive categories.


2021 ◽  
Vol 13 ◽  
Author(s):  
Aiden M. Payne ◽  
Jacqueline A. Palmer ◽  
J. Lucas McKay ◽  
Lena H. Ting

The mechanisms underlying associations between cognitive set shifting impairments and balance dysfunction are unclear. Cognitive set shifting refers to the ability to flexibly adjust behavior to changes in task rules or contexts, which could be involved in flexibly adjusting balance recovery behavior to different contexts, such as the direction the body is falling. Prior studies found associations between cognitive set shifting impairments and severe balance dysfunction in populations experiencing frequent falls. The objective of this study was to test whether cognitive set shifting ability is expressed in successful balance recovery behavior in older adults with high clinical balance ability (N = 19, 71 ± 7 years, 6 female). We measured cognitive set shifting ability using the Trail Making Test and clinical balance ability using the miniBESTest. For most participants, cognitive set shifting performance (Trail Making Test B-A = 37 ± 20 s) was faster than normative averages (46 s for comparable age and education levels), and balance ability scores (miniBESTest = 25 ± 2/28) were above the threshold for fall risk (23 for people between 70 and 80 years). Reactive balance recovery in response to support-surface translations in anterior and posterior directions was assessed in terms of body motion, muscle activity, and brain activity. Across participants, lower cognitive set shifting ability was associated with smaller peak center of mass displacement during balance recovery, lower directional specificity of late phase balance-correcting muscle activity (i.e., greater antagonist muscle activity 200–300 ms after perturbation onset), and larger cortical N1 responses (100–200 ms). None of these measures were associated with clinical balance ability. Our results suggest that cognitive set shifting ability is expressed in balance recovery behavior even in the absence of profound clinical balance disability. Specifically, our results suggest that lower flexibility in cognitive task performance is associated with lower ability to incorporate the directional context into the cortically mediated later phase of the motor response. The resulting antagonist activity and stiffer balance behavior may help explain associations between cognitive set shifting impairments and frequent falls.


2021 ◽  
Author(s):  
Aiden Payne ◽  
Jacqueline A Palmer ◽  
J Lucas McKay ◽  
Lena H Ting

The mechanisms underlying associations between cognitive set shifting impairments and balance dysfunction are unclear. Cognitive set shifting refers to the ability to flexibly adjust behavior to changes in task rules or contexts, which could be involved in flexibly adjusting balance recovery behavior to different contexts, such as the direction the body is falling. Prior studies found associations between cognitive set shifting impairments and severe balance dysfunction in populations experiencing frequent falls. The objective of this study was to test whether cognitive set shifting ability is expressed in successful balance recovery behavior in older adults with high clinical balance ability (N=19, 71 ± 7 years, 6 female). We measured cognitive set shifting ability using the Trail Making Test and clinical balance ability using the miniBESTest. For most participants, cognitive set shifting performance (Trail Making Test B-A = 37 ± 20s) was faster than normative averages (46s for comparable age and education levels), and balance ability scores (miniBESTest = 25 ± 2 / 28) were above the threshold for fall risk (23 for people between 70-80 years). Reactive balance recovery in response to support-surface translations in anterior and posterior directions was assessed in terms of body motion, muscle activity, and brain activity. Across participants, lower cognitive set shifting ability was associated with smaller peak center of mass displacement during balance recovery, lower directional specificity of late phase balance-correcting muscle activity (i.e., greater antagonist muscle activity 200-300ms after perturbation onset), and larger cortical N1 responses (100-200ms). None of these measures were associated with clinical balance ability. Our results suggest that cognitive set shifting ability is expressed in balance recovery behavior even in the absence of profound clinical balance disability. Specifically, our results suggest that lower flexibility in cognitive task performance is associated with lower ability to incorporate the directional context into the cortically-mediated later phase of the motor response. The resulting antagonist activity and stiffer balance behavior may help explain associations between cognitive set shifting impairments and frequent falls.


2014 ◽  
Vol 10 ◽  
pp. P120-P120
Author(s):  
Mahta Karimpoor ◽  
Fred Tam ◽  
Corinne Fischer ◽  
Tom Schweizer ◽  
Simon Graham

2002 ◽  
Vol 60 (4) ◽  
pp. 900-905 ◽  
Author(s):  
Jorge Moll ◽  
Ricardo de Oliveira-Souza ◽  
Fernanda Tovar Moll ◽  
Ivanei Edson Bramati ◽  
Pedro Angelo Andreiuolo

The trail making test (TMT) pertains to a family of tests that tap the ability to alternate between cognitive categories. However, the value of the TMT as a localizing instrument remains elusive. Here we report the results of a functional magnetic resonance imaging (fMRI) study of a verbal adaptation of the TMT (vTMT). The vTMT takes advantage of the set-shifting properties of the TMT and, at the same time, minimizes the visuospatial and visuomotor components of the written TMT. Whole brain BOLD fMRI was performed during the alternating execution of vTMTA and vTMTB in seven normal adults with more than 12 years of formal education. Brain activation related to the set-shifting component of vTMTB was investigated by comparing performance on vTMTB with vTMTA, a simple counting task. There was a marked asymmetry of activation in favor of the left hemisphere, most notably in dorsolateral prefrontal cortex (BA 6 lateral, 44 and 46) and supplementary motor area/cingulate sulcus (BA 6 medial and 32). The intraparietal sulcus (BA 7 and 39) was bilaterally activated. These findings are in line with clinico-anatomic and functional neuroimaging data that point to a critical role of the dorsolateral and medial prefrontal cortices as well as the intraparietal sulci in the regulation of cognitive flexibility, intention, and the covert execution of saccades/anti-saccades. Many commonly used neuropsychological paradigms, such as the Stroop, Wisconsin Card Sorting, and go - no go tasks, share some patterns of cerebral activation with the TMT.


Cortex ◽  
2020 ◽  
Vol 132 ◽  
pp. 238-249 ◽  
Author(s):  
Emmanuel Mandonnet ◽  
Marion Vincent ◽  
Antoni Valero-Cabré ◽  
Valentine Facque ◽  
Marion Barberis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document