neuroimaging data
Recently Published Documents


TOTAL DOCUMENTS

959
(FIVE YEARS 401)

H-INDEX

61
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Linda Zhang ◽  
Miguel Calero ◽  
Miguel Medina ◽  
Bryan Strange

The APOE ϵ4 allele is the primary genetic risk factor for late onset Alzheimer's disease (AD). A cardinal problem in determining APOE ϵ4's effect on cognition and brain structure in older individuals is dissociating prodromal changes — linked to increased AD risk — from potential phenotypic differences. To address this, we used cognitive and neuroimaging data from a large cohort of cognitively normal 69-86 year-olds with up to 8 yearly follow-ups to investigate cross-sectional and longitudinal differences between APOE ϵ3/ϵ3 homozygotes and ϵ3/ϵ4 heterozygotes. Although we found a significant age-by-genotype interaction in right hippocampal volume, once our analyses were conditionalised by future diagnosis to account for prodromal mild cognitive impairment (MCI) and AD, this effect was no longer observed. Likewise, longitudinally, rate of hippocampal atrophy was determined not by genotype, but by future diagnosis. Thus, we provide direct evidence in support of the prodromal hypothesis of APOE ϵ4 on brain structure.


2022 ◽  
Vol 15 ◽  
Author(s):  
Marcel Peter Zwiers ◽  
Stefano Moia ◽  
Robert Oostenveld

Analyses of brain function and anatomy using shared neuroimaging data is an important development, and have acquired the potential to be scaled up with the specification of a new Brain Imaging Data Structure (BIDS) standard. To date, a variety of software tools help researchers in converting their source data to BIDS but often require programming skills or are tailored to specific institutes, data sets, or data formats. In this paper, we introduce BIDScoin, a cross-platform, flexible, and user-friendly converter that provides a graphical user interface (GUI) to help users finding their way in BIDS standard. BIDScoin does not require programming skills to be set up and used and supports plugins to extend their functionality. In this paper, we show its design and demonstrate how it can be applied to a downloadable tutorial data set. BIDScoin is distributed as free and open-source software to foster the community-driven effort to promote and facilitate the use of BIDS standard.


2022 ◽  
pp. 1-154
Author(s):  
Caleb Geniesse ◽  
Samir Chowdhury ◽  
Manish Saggar

Abstract For better translational outcomes researchers and clinicians alike demand novel tools to distil complex neuroimaging data into simple yet behaviorally relevant representations at the single-participant level. Recently, the Mapper approach from topological data analysis (TDA) has been successfully applied on noninvasive human neuroimaging data to characterize the entire dynamical landscape of whole-brain configurations at the individual level without requiring any spatiotemporal averaging at the outset. Despite promising results, initial applications of Mapper to neuroimaging data were constrained by (1) the need for dimensionality reduction, and (2) lack of a biologically grounded heuristic for efficiently exploring the vast parameter space. Here, we present a novel computational framework for Mapper—designed specifically for neuroimaging data—that removes limitations and reduces computational costs associated with dimensionality reduction and parameter exploration. We also introduce new meta-analytic approaches to better anchor Mapper-generated representations to neuroanatomy and behavior. Our new NeuMapper framework was developed and validated using multiple fMRI datasets where participants engaged in continuous multitask experiments that mimic “ongoing” cognition. Looking forward, we hope our framework could help researchers push the boundaries of psychiatric neuroimaging towards generating insights at the single-participant level while scaling across consortium-size datasets.


2022 ◽  
Vol 15 ◽  
Author(s):  
Seyed Hani Hojjati ◽  
Abbas Babajani-Feremi ◽  

Background: In recent years, predicting and modeling the progression of Alzheimer’s disease (AD) based on neuropsychological tests has become increasingly appealing in AD research.Objective: In this study, we aimed to predict the neuropsychological scores and investigate the non-linear progression trend of the cognitive declines based on multimodal neuroimaging data.Methods: We utilized unimodal/bimodal neuroimaging measures and a non-linear regression method (based on artificial neural networks) to predict the neuropsychological scores in a large number of subjects (n = 1143), including healthy controls (HC) and patients with mild cognitive impairment non-converter (MCI-NC), mild cognitive impairment converter (MCI-C), and AD. We predicted two neuropsychological scores, i.e., the clinical dementia rating sum of boxes (CDRSB) and Alzheimer’s disease assessment scale cognitive 13 (ADAS13), based on structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) biomarkers.Results: Our results revealed that volumes of the entorhinal cortex and hippocampus and the average fluorodeoxyglucose (FDG)-PET of the angular gyrus, temporal gyrus, and posterior cingulate outperform other neuroimaging features in predicting ADAS13 and CDRSB scores. Compared to a unimodal approach, our results showed that a bimodal approach of integrating the top two neuroimaging features (i.e., the entorhinal volume and the average FDG of the angular gyrus, temporal gyrus, and posterior cingulate) increased the prediction performance of ADAS13 and CDRSB scores in the converting and stable stages of MCI and AD. Finally, a non-linear AD progression trend was modeled to describe the cognitive decline based on neuroimaging biomarkers in different stages of AD.Conclusion: Findings in this study show an association between neuropsychological scores and sMRI and FDG-PET biomarkers from normal aging to severe AD.


2021 ◽  
pp. 154596832110628
Author(s):  
Steven C. Cramer ◽  
Jill See ◽  
Brent Liu ◽  
Matthew Edwardson ◽  
Ximing Wang ◽  
...  

Objective Patients show substantial differences in response to rehabilitation therapy after stroke. We hypothesized that specific genetic profiles might explain some of this variance and, secondarily, that genetic factors are related to cerebral atrophy post-stroke. Methods The phase 3 ICARE study examined response to motor rehabilitation therapies. In 216 ICARE enrollees, DNA was analyzed for presence of the BDNF val66met and the ApoE ε4 polymorphism. The relationship of polymorphism status to 12-month change in motor status (Wolf Motor Function Test, WMFT) was examined. Neuroimaging data were also evaluated (n=127). Results Subjects were 61±13 years old (mean±SD) and enrolled 43±22 days post-stroke; 19.7% were BDNF val66met carriers and 29.8% ApoE ε4 carriers. Carrier status for each polymorphism was not associated with WMFT, either at baseline or over 12 months of follow-up. Neuroimaging, acquired 5±11 days post-stroke, showed that BDNF val66met polymorphism carriers had a 1.34-greater degree of cerebral atrophy compared to non-carriers (P=.01). Post hoc analysis found that age of stroke onset was 4.6 years younger in subjects with the ApoE ε4 polymorphism (P=.02). Conclusion Neither the val66met BDNF nor ApoE ε4 polymorphism explained inter-subject differences in response to rehabilitation therapy. The BDNF val66met polymorphism was associated with cerebral atrophy at baseline, echoing findings in healthy subjects, and suggesting an endophenotype. The ApoE ε4 polymorphism was associated with younger age at stroke onset, echoing findings in Alzheimer’s disease and suggesting a common biology. Genetic associations provide insights useful to understanding the biology of outcomes after stroke.


2021 ◽  
Author(s):  
Lia Talozzi ◽  
Stephanie Forkel ◽  
Valentina Pacella ◽  
Victor Nozais ◽  
Maurizio Corbetta ◽  
...  

Abstract Stroke significantly impacts quality of life. However, the long-term cognitive evolution in stroke is poorly predictable at the individual level. There is an urgent need for a better prediction of long-term symptoms based on acute clinical neuroimaging data. Previous works have demonstrated a strong relationship between the location of white matter disconnections and clinical symptoms. However, rendering the entire space of possible disconnections-deficit associations optimally surveyable will allow for a systematic association between brain disconnections and cognitive-behavioural measures at the individual level. Here we present the most comprehensive framework, a composite morphospace to predict neuropsychological scores one year after stroke. Linking the latent disconnectome morphospace to neuropsychological outcomes yields biological insights available as the first comprehensive atlas of disconnectome-deficit relations across 86 neuropsychological scores. Out-of-sample prediction derived from this atlas achieved average accuracy over 80%, which is higher than any other framework. Our novel predictive framework is available as an interactive web application, the disconnectome symptoms discoverer (http://disconnectomestudio.bcblab.com), to provide the foundations for a new and practical approach to modelling cognition in stroke. Our atlas and web application will reduce the burden of cognitive deficits on patients, their families, and wider society while also helping to tailor personalized treatment programs and discover new targets for treatments. We expect the range of assessments and the predictive power of our framework to increase even further through future crowdsourcing.


2021 ◽  
Author(s):  
Fatma Deniz ◽  
Christine Tseng ◽  
Leila Wehbe ◽  
Jack L Gallant

The meaning of words in natural language depends crucially on context. However, most neuroimaging studies of word meaning use isolated words and isolated sentences with little context. Because the brain may process natural language differently from how it processes simplified stimuli, there is a pressing need to determine whether prior results on word meaning generalize to natural language. We investigated this issue by directly comparing the brain representation of semantic information across four conditions that vary in context. fMRI was used to record human brain activity while four subjects (two female) read words presented in four different conditions: narratives (Narratives), isolated sentences (Sentences), blocks of semantically similar words (Semantic Blocks), and isolated words (Single Words). Using a voxelwise encoding model approach, we find two clear and consistent effects of increasing context. First, stimuli with more context (Narratives, Sentences) evoke brain responses with substantially higher SNR across bilateral visual, temporal, parietal, and prefrontal cortices compared to stimuli with little context (Semantic Blocks, Single Words). Second, increasing context increases the representation of semantic information across bilateral temporal, parietal, and prefrontal cortices at the group level. However, in individual subjects, only natural language stimuli (Narratives) consistently evoke widespread representation of semantic information across the cortical surface. These results show that context has large effects on both the quality of neuroimaging data and on the representation of meaning in the brain, and they imply that the results of neuroimaging studies that use stimuli with little context may not generalize well to the natural regime.


Sign in / Sign up

Export Citation Format

Share Document