Force-feedback grasper helps restore sense of touch in minimally invasive surgery,

1999 ◽  
Vol 3 (3) ◽  
pp. 278-285 ◽  
Author(s):  
M MacFarlane
1998 ◽  
Vol 114 ◽  
pp. A1408
Author(s):  
M. MacFarlane ◽  
J. Rosen ◽  
B. Hannaford ◽  
C. Pellegrini ◽  
M. Sinanan

2020 ◽  
Vol 11 ◽  
Author(s):  
Chao Huang ◽  
Qizhuo Wang ◽  
Mingfu Zhao ◽  
Chunyan Chen ◽  
Sinuo Pan ◽  
...  

Minimally invasive surgery (MIS) has been the preferred surgery approach owing to its advantages over conventional open surgery. As a major limitation, the lack of tactile perception impairs the ability of surgeons in tissue distinction and maneuvers. Many studies have been reported on industrial robots to perceive various tactile information. However, only force data are widely used to restore part of the surgeon’s sense of touch in MIS. In recent years, inspired by image classification technologies in computer vision, tactile data are represented as images, where a tactile element is treated as an image pixel. Processing raw data or features extracted from tactile images with artificial intelligence (AI) methods, including clustering, support vector machine (SVM), and deep learning, has been proven as effective methods in industrial robotic tactile perception tasks. This holds great promise for utilizing more tactile information in MIS. This review aims to provide potential tactile perception methods for MIS by reviewing literatures on tactile sensing in MIS and literatures on industrial robotic tactile perception technologies, especially AI methods on tactile images.


Author(s):  
J. E. N. Jaspers ◽  
M. Shehata ◽  
F. Wijkhuizen ◽  
J. L. Herder ◽  
C. A. Grimbergen

Performing complex tasks in Minimally Invasive Surgery (MIS) is demanding due to a disturbed hand-eye co-ordination, the use of non-ergonomic instruments with limited degrees of freedom (DOFs) and a lack of force feedback. Robotic telemanipulatory systems enhance surgical dexterity by providing up to 7 DOFs. They allow the surgeon to operate in an ergonomically favorable position with more intuitive manipulation of the instruments. Commercially available robotic systems, however, are very bulky, expensive and do not provide any force feedback. The aim of our study was to develop a simple mechanical manipulator for MIS. When manipulating the handle of the device, the surgeon’s wrist and grasping movements are directly transmitted to the deflectable instrument tip in 7 DOFs. The manipulator consists of a parallelogram mechanism with steel wires. First phantom experience indicated that the system functions properly. The MIM provides some force feedback improving safety. A set of MIMs seems to be an economical and compact alternative for robotic systems.


2005 ◽  
Vol 241 (1) ◽  
pp. 102-109 ◽  
Author(s):  
Gregory Tholey ◽  
Jaydev P. Desai ◽  
Andres E. Castellanos

2015 ◽  
Vol 798 ◽  
pp. 319-323
Author(s):  
Ali Reza Hassan Beiglou ◽  
Javad Dargahi

It has been more than 20 years that robot-assisted minimally invasive surgery (RMIS) has brought remarkable accuracy and dexterity for surgeons along with the decreasing trauma for the patients. In this paper a novel method of the tissue’s surface profile mapping is proposed. The tissue surface profile plays an important role for material identification during RMIS. It is shown how by integrating the force feedback into robot controller the surface profile of the tissue can be obtained with force feedback scanning. The experiment setup includes a 5 degree of freedoms (DOFs) robot which is equipped with a strain-gauge ball caster as the force feedback. Robot joint encoders signals and the captured force signal of the strain-gauge are transferred to developed surface transformation algorithm (STA). The real-time geometrical transformation process is triggered with force signal to identify contact points between the ball caster and the artificial tissue. The 2D surface profile of tissue will be mapped based on these contact points. Real-time capability of the proposed system is evaluated experimentally for the artifical tissues in a designed test rig.


2014 ◽  
Vol 101 (13) ◽  
pp. 1766-1773 ◽  
Author(s):  
S. P. Rodrigues ◽  
T. Horeman ◽  
P. Sam ◽  
J. Dankelman ◽  
J. J. van den Dobbelsteen ◽  
...  

2015 ◽  
Vol 22 (12) ◽  
pp. 4566-4577 ◽  
Author(s):  
Kun Li ◽  
Bo Pan ◽  
Wen-peng Gao ◽  
Hai-bo Feng ◽  
Yi-li Fu ◽  
...  

2021 ◽  
Vol 10 (2) ◽  
pp. 619-631
Author(s):  
Sakol Nakdhamabhorn ◽  
M. Branesh Pillai ◽  
Jackrit Suthakorn

Minimally invasive surgery (MIS) is one of the most challenging tasks in surgical procedures due to the lack of visibility of the surgical area, instrument orientation, and depth perception. A tele-operated robot assisted minimally invasive surgery is developed to enhance a surgeon's hand dexterity and accuracy. To perform MIS, the surgeon controls a slave manipulator via a master manipulator, so the force feedback and motion feedback are required to imitate an amount of action and reaction force between master and slave manipulator. The complicated MIS requires more complex surgical manipulator with multi DOFs and multiple force feedback. The limitation of multiple DOFs force feedback is a bandwidth of torque sensors. Therefore, this study proposes a sensorless based 5-DOF Bilaterally controlled surgical manipulation. In this research disturbance observer (DOB) is used to identify the internal disturbance of the system, which is used to estimate the reaction torque. This research mainly focuses on a 5-DOF bilaterally controlled surgical manipulator to maintain a position and additional force. The result of torque error in contact motion is less than 2%, the non-contact motion error is not over 5%, and it is evident that the error is always less than 0.3% for the position response.


Sign in / Sign up

Export Citation Format

Share Document