Volume 2: 28th Biennial Mechanisms and Robotics Conference, Parts A and B
Latest Publications


TOTAL DOCUMENTS

172
(FIVE YEARS 0)

H-INDEX

10
(FIVE YEARS 0)

Published By ASMEDC

0791846954

Author(s):  
X. J. Guo ◽  
F. Q. Chang ◽  
S. J. Zhu

On the basis of first-order and second-order kinematic influence coefficient matrices, dynamics characteristics indices for robot manipulator are presented in the paper. Different from indices before, these indices include not only the first-order kinematics influence coefficient matrix G, but also the second-order kinematic influence coefficient matrix H. Then with the global index, these indices can be used to guide the dynamics design.


Author(s):  
Chalongrath Pholsiri ◽  
Chetan Kapoor ◽  
Delbert Tesar

This research uses new developments in redundancy resolution and real-time capability analysis to improve the ability of an articulated arm to satisfy task constraints. Task constraints are specified using numerical values of position, velocity, force, and accuracy. Inherent in the definition of task constraints is the number of output constraints that the system needs to satisfy. The relationship of this with the input space (degrees of freedom) defines the ability to optimize manipulator performance. This is done through a Task-Based Redundancy Resolution (TBRR) scheme that uses the extra resources to find a solution that avoids system constraints (joint limits, singularities, etc.) and satisfies task constraints. To avoid system constraints, we use well-understood criteria associated with the constraints. For task requirements, the robot capabilities are estimated based on kinematic and dynamic manipulability analyses. We then compare the robot capabilities with the user-specified requirement values. This eliminates a confusing chore of selecting a proper set of performance criteria for a task at hand. The breakthrough of this approach lies in the fact that it continuously evaluates the relationship between task constraints and system resources, and when possible, improves system performance. This makes it equally applicable to redundant and non-redundant systems. The scheme is implemented using an object-oriented operational software framework and its effectiveness is demonstrated in computer simulations of a 10-DOF manipulator.


Author(s):  
J. E. N. Jaspers ◽  
M. Shehata ◽  
F. Wijkhuizen ◽  
J. L. Herder ◽  
C. A. Grimbergen

Performing complex tasks in Minimally Invasive Surgery (MIS) is demanding due to a disturbed hand-eye co-ordination, the use of non-ergonomic instruments with limited degrees of freedom (DOFs) and a lack of force feedback. Robotic telemanipulatory systems enhance surgical dexterity by providing up to 7 DOFs. They allow the surgeon to operate in an ergonomically favorable position with more intuitive manipulation of the instruments. Commercially available robotic systems, however, are very bulky, expensive and do not provide any force feedback. The aim of our study was to develop a simple mechanical manipulator for MIS. When manipulating the handle of the device, the surgeon’s wrist and grasping movements are directly transmitted to the deflectable instrument tip in 7 DOFs. The manipulator consists of a parallelogram mechanism with steel wires. First phantom experience indicated that the system functions properly. The MIM provides some force feedback improving safety. A set of MIMs seems to be an economical and compact alternative for robotic systems.


Author(s):  
Hong-Sen Yan ◽  
Feng-Ming Ou ◽  
Ming-Feng Tang

An algorithm is presented, based on graph theory, for enumerating all feasible serial and/or parallel combined mechanisms from the given rotary or translational power source and specific kinematic building blocks. Through the labeled out-tree representations for the configurations of combined mechanisms, the enumeration procedure is developed by adapting the algorithm for the enumeration of trees. A rotary power source and four kinematic building blocks: a crank-rocker linkage, a rack-pinion, a double-slider mechanism, and a cam-follower mechanism, are chosen as the combination to illustrate the algorithm. And, two examples are provided to validate the algorithm.


Author(s):  
Hong-Jen Chen ◽  
Richard W. Longman ◽  
Meng-Sang Chew

Fundamental concepts of Iterative Learning Control (ILC) are applied to path generating problems in mechanisms. As an illustration to such class of problems, an adjustable four-bar linkage is used. The coupler point of a four-bar traces a coupler curve that will in general deviate from the desired coupler path. Except at the precision points, the coupler curve will exhibit some structural error, which is the deviation from the specified curve. The structural error will repeat itself every cycle at exactly the same points over the range of interest. Since ILC is a methodology that was developed to handle similar repetitive errors in control systems, it is believed that it will be well served to apply it to this class of problems. Results show that ILC can be simple to implement, and it is found to be very well suited for such path generation problems.


Author(s):  
Ethan Stump ◽  
Vijay Kumar

While there is extensive literature available on parallel manipulators in general, there has been much less attention given to cable-driven parallel manipulators. In this paper, we address the problem of analyzing the reachable workspace using the tools of semi-definite programming. We build on earlier work [1, 2] done using similar techniques by deriving limiting conditions that allow us to compute analytic expressions for the boundary of the reachable workspace. We illustrate this computation for a planar parallel manipulator with four actuators.


Author(s):  
Abdul Rauf ◽  
Sung-Gaun Kim ◽  
Jeha Ryu

Kinematic calibration is a process that estimates the actual values of geometric parameters to minimize the error in absolute positioning. Measuring all the components of Cartesian posture assure identification of all parameters. However, measuring all components, particularly the orientation, can be difficult and expensive. On the other hand, with partial pose measurements, experimental procedure is simpler. However, all parameters may not be identifiable. This paper proposes a new device that can be used to identify all kinematic parameters with partial pose measurements. Study is performed for a 6 DOF (degree-of-freedom) fully parallel Hexa Slide manipulator. The device, however, is general and can be used for other parallel manipulators. The proposed device consists of a link with U joints on both sides and is equipped with a rotary sensor and a biaxial inclinometer. When attached between the base and the mobile platform, the device restricts the end-effector’s motion to 5 DOF and measures two position components and one rotation component of the end-effector. Numerical analyses of the identification Jacobian reveal that all parameters are identifiable. Computer simulations show that the identification is robust for the errors in the initial guess and the measurement noise. Intrinsic inaccuracies of the device can significantly deteriorate the calibration results. A measurement procedure is proposed and cost functions are discussed to prevent propagation of the inaccuracies to the calibration results.


Author(s):  
C. Amarnath ◽  
K. N. Umesh

The ability to move at reasonable ease in all directions is an important requirement in the design of manipulators. The degree of ease of mobility varies from point to point in the workspace of the manipulator’s end effector. Maximum ease of mobility is obtained at an isotropic point, and the minimum occurs at singularities. An attempt has been made here to use a geometric approach for determining the isotropic points in the workspace of planar 5-bar linkages. The geometrical approach leads to interesting observations on the location of isotropic points in the workspace. The procedure also yields a technique for the synthesis of 5-bar linkages and associated coupler points exhibiting isotropic behaviour. Additionally it has been shown that coupler points exhibiting isotropic mobility occur in pairs.


Author(s):  
Roberto F. Lu

Most fixed automations in traditional manufacturing systems are not equipped to manage product variations efficiently. This paper presents a design and configuration for a machine-vision-equipped robotic packing cell that is capable of managing a wide range of product sizes. Product size information is gathered at an earlier stage in the manufacturing process and then transferred electronically to the robot cell. Different controllers are needed to manage robot cell functions related to incoming product, machine vision, robot control, robot manipulator, and multiple layers of safety control information. Each controller, due to the nature of its function, has different advantages in processing different data types. In order to achieve the highest possible robot manipulator utilization rate, the assignment of information processing among controllers needs to be thoughtfully planned, especially for the critical mathematical routines. Coordination and calibration between charged-coupled device (CCD) cameras and robots in existing manufacturing facilities are configured with considerations for building vibrations, lighting conditions, and signal processing assignments among the available devices. System efficiency is improved when the vision signal, robot logical signal, and robot manipulator signal processing units are running cohesively in parallel. The capability of the machine-vision-assisted robot end effector automatic path adjustment, to pick up and pack different sizes of products dynamically, allows a higher level of flexibility and efficiency. This paper describes a feasible design and configuration for an integrated machine vision robotic cell in a manufacturing system.


Author(s):  
Craig P. Lusk ◽  
Larry L. Howell

Change-point mechanisms are shown to be significant in the design of surface micromachined MEMS. The design space of change-point mechanisms is derived for an arbitrary single loop change-point mechanism using a global and local approach. A function on the design space, the mechanism’s length, is constructed for fourbars. An inversion operator, a mapping from the design space to the design space, is also constructed for fourbars. The method for constructing the function and the operator is shown to be capable of extension to single loop change-point mechanisms with five or more links. The results give insight into design possibilities and limitations of change-point mechanisms.


Sign in / Sign up

Export Citation Format

Share Document