A novel, de novo germline TP53 mutation in a rare presentation of the Li-Fraumeni syndrome in the maxilla

Oral Oncology ◽  
2002 ◽  
Vol 38 (4) ◽  
pp. 383-390 ◽  
Author(s):  
Anna Patrikidou ◽  
Jon Bennett ◽  
Patrick Abou-Sleiman ◽  
Joy D.A. Delhanty ◽  
Malcolm Harris
2003 ◽  
Vol 145 (1) ◽  
pp. 60-64 ◽  
Author(s):  
Marie Trkova ◽  
Lenka Foretova ◽  
Roman Kodet ◽  
Petra Hedvicakova ◽  
Zdenek Sedlacek

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 10538-10538
Author(s):  
Carlos Christian Vera Recio ◽  
Jessica Corredor ◽  
Elissa Dodd-Eaton ◽  
Angelica M. Gutierrez-Barrera ◽  
Najat C. Daw ◽  
...  

10538 Background: Li-Fraumeni syndrome (LFS) is an inherited cancer syndrome mainly caused by a deleterious mutation in TP53. An estimated 48% of LFS patients present due to a deleterious de novo mutation (DNM) in TP53. The knowledge of DNM status, DNM or familial mutation (FM), of an LFS patient requires genetic testing of both parents which is often inaccessible, making de novo LFS patients an understudied population. Famdenovo.TP53 is a Mendelian Risk prediction model used to predict DNM status of TP53 mutation carriers based on the cancer-family history and several input genetic parameters, including disease-gene penetrance. The good predictive performance of Famdenovo.TP53 was demonstrated using data collected from four historical US cohorts. We hypothesize that by incorporating penetrance estimates that are specific for different types of cancers diagnosed in family members, we can develop a model with further improved calibration, accuracy and prediction. Methods: We present Famdenovo.CS, which uses cancer-specific penetrance estimates that were derived previously using a Bayesian semi-parametric competing risk model, to calculate the DNM probability. We use our model to analyze 101 families recently collected from the Clinical Cancer Genetic program at MD Anderson Cancer Center (CCG-TP53) that includes 20 families with known DNM status and 81 families with unknown DNM status. We used the concordance index (AUC), observed:expected ratios (OE) and Brier score (BS) to measure our model’s discrimination, calibration and accuracy, respectively. We estimate the proportion of probands that present a DNM and compare DNM to FM carriers in several areas including: cancer types diagnosed, age at diagnosis, number of primary cancers diagnosed, sex, amino acid change caused by mutation in TP53. Results: Famdenovo.CS showed equally good discrimination and calibration performance to Famdenovo.TP53, while improving the overall accuracy, demonstrated by a decrease in the Brier score of -0.09 (95% CI: [-0.02, -0.19]). Of the 101 probands in the CCG-TP53 cohort, we predict 39 to be DNMs and 62 to be FMs. The cancer types and ages of diagnosis observed in FMs and DNMs are similarly distributed. Conclusions: Famdenovo.CS shows improved model accuracy in the CCG cohort. DNMs in TP53 are a prevalent cause of LFS and we did not find differences in the clinical characteristics of DNM and FM carriers. Our model allows for a systematic identification and characterization of TP53 DNM carriers.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
David P. Douglass ◽  
Kimo C. Stine ◽  
Jason E. Farrar

2016 ◽  
Vol 36 (5) ◽  
pp. 463-468 ◽  
Author(s):  
Kyoung-Jin Park ◽  
Hyun-Jung Choi ◽  
Soon-Pal Suh ◽  
Chang-Seok Ki ◽  
Jong-Won Kim

2010 ◽  
Vol 134 (7) ◽  
pp. 1010-1015 ◽  
Author(s):  
Sameer S. Talwalkar ◽  
C. Cameron Yin ◽  
Rizwan C. Naeem ◽  
M. John Hicks ◽  
Louise C. Strong ◽  
...  

Abstract Context.—Li-Fraumeni syndrome (LFS), characterized by predisposition to early onset of a variety of malignancies, is usually associated with germline mutation of the tumor-suppressor gene, TP53. Mutation carriers are at increased risk of multiple primary tumors, many of which arise in previous radiation-therapy sites. In patients with LFS, acute myeloid leukemia is uncommon and myelodysplastic syndrome (MDS) is rare. Objective.—To evaluate the morphologic, cytogenetic, and molecular diagnostic findings of 3 unique cases of MDS arising in patients with germline TP53 mutation, 2 with classic LFS. Design.—We searched the Li-Fraumeni Syndrome Registry in the Department of Genetics at the University of Texas M. D. Anderson Cancer Center (Houston, Texas) and identified 3 patients with documented germline TP53 mutations or LFS who had developed MDS during a period of 6 years (2000–2005). The clinical, cytogenetic, and molecular diagnostic data and bone marrow aspirate smears and biopsies on all patients were reviewed. Immunohistochemical staining with antibody to p53 was also performed. Results.—Two patients met the criteria for classic LFS; one had no history of malignancy in first-degree relatives. The MDS followed chemotherapy and radiation therapy and progressed to acute myeloid leukemia in 2 patients. Cytogenetic analysis demonstrated chromosome 5 abnormalities in a complex karyotype in all cases. Two patients died, one of acute myeloid leukemia and one with glioblastoma multiforme, MDS, and persistent pancytopenia. Conclusions.—Patients with LFS may develop MDS, which is most likely therapy-related and is associated with cytogenetic markers of poor prognosis.


2017 ◽  
Vol 55 (3) ◽  
pp. 173-180 ◽  
Author(s):  
Mariette Renaux-Petel ◽  
Françoise Charbonnier ◽  
Jean-Christophe Théry ◽  
Pierre Fermey ◽  
Gwendoline Lienard ◽  
...  

BackgroundDevelopment of tumours such as adrenocortical carcinomas (ACC), choroid plexus tumours (CPT) or female breast cancers before age 31 or multiple primary cancers belonging to the Li-Fraumeni (LFS) spectrum is, independently of the familial history, highly suggestive of a germline TP53 mutation. The aim of this study was to determine the contribution of de novo and mosaic mutations to LFS.Methods and resultsAmong 328 unrelated patients harbouring a germline TP53 mutation identified by Sanger sequencing and/or QMPSF, we could show that the mutations had occurred de novo in 40 cases, without detectable parental age effect. Sanger sequencing revealed two mosaic mutations in a child with ACC and in an unaffected father of a child with medulloblastoma. Re-analysis of blood DNA by next-generation sequencing, performed at a depth above 500X, from 108 patients suggestive of LFS without detectable TP53 mutations, allowed us to identify 6 additional cases of mosaic TP53 mutations, in 2/49 children with ACC, 2/21 children with CPT, in 1/31 women with breast cancer before age 31 and in a patient who developed an osteosarcoma at age 12, a breast carcinoma and a breast sarcoma at age 35.ConclusionsThis study performed on a large series of TP53 mutation carriers allows estimating the contribution to LFS of de novo mutations to at least 14% (48/336) and suggests that approximately one-fifth of these de novo mutations occur during embryonic development. Considering the medical impact of TP53 mutation identification, medical laboratories in charge of TP53 testing should ensure the detection of mosaic mutations.


Sign in / Sign up

Export Citation Format

Share Document