scholarly journals Fast Computation of Stabilizing Predictive Control Laws

1995 ◽  
Vol 28 (5) ◽  
pp. 487-493 ◽  
Author(s):  
L. Chisci ◽  
A. Garulli ◽  
G. Zappa
Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2087
Author(s):  
Ismi Rosyiana Fitri ◽  
Jung-Su Kim

In the dual-mode model predictive control (MPC) framework, the size of the stabilizable set, which is also the region of attraction, depends on the terminal constraint set. This paper aims to formulate a larger terminal set for enlarging the region of attraction in a nonlinear MPC. Given several control laws and their corresponding terminal invariant sets, a convex combination of the given sets is used to construct a time-varying terminal set. The resulting region of attraction is the union of the regions of attraction from each invariant set. Simulation results show that the proposed MPC has a larger stabilizable initial set than the one obtained when a fixed terminal set is used.


2012 ◽  
Vol 15 (6) ◽  
pp. 1714-1722 ◽  
Author(s):  
M. Canale ◽  
L. Fagiano ◽  
M.C. Signorile

Author(s):  
Peinan Ge ◽  
Jingang Yi ◽  
Jianbo Li ◽  
Hao Lin

Electroporation is an elegant means to deliver molecules into the cellular cytoplasm, while simultaneously maintaining cell viability and functionality. Despite extensive research, however, electroporation methods still fall short of the desired efficiency and reliability. We present a model predictive control (MPC) design for enabling highly efficient and reliable electroporation processes. Instead of using one single electrical pulse in current practice, we consider a controlled multi-pulse electroporation based on an MPC framework. The most attractive properties of using MPC design of multi-pulse electroporation are the fast computation of optimal control solutions and the real-time tunability of the electrical field density during the process. We demonstrate the controlled electroporation process through simulation examples.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1325 ◽  
Author(s):  
Yasuo Sasaki ◽  
Daisuke Tsubakino

Complexity of online computation is a drawback of model predictive control (MPC) when applied to the Navier–Stokes equations. To reduce the computational complexity, we propose a method to approximate the MPC with an explicit control law by using regression analysis. In this paper, we extracted two state-feedback control laws and two output-feedback control laws for flow around a cylinder as a benchmark. The state-feedback control laws that feed back different quantities to each other were extracted by ridge regression, and the two output-feedback control laws, whose measurement output is the surface pressure, were extracted by ridge regression and Gaussian process regression. In numerical simulations, the state-feedback control laws were able to suppress vortex shedding almost completely. While the output-feedback control laws could not suppress vortex shedding completely, they moderately improved the drag of the cylinder. Moreover, we confirmed that these control laws have some degree of robustness to the change in the Reynolds number. The computation times of the control input in all the extracted control laws were considerably shorter than that of the MPC.


Sign in / Sign up

Export Citation Format

Share Document