Optimal control of production-dependent failure-prone manufacturing systems

1999 ◽  
Vol 32 (2) ◽  
pp. 237-242
Author(s):  
Dong-Ping Song ◽  
Wei Xing ◽  
You-Xian Sun ◽  
Tie-Jun Wu
2014 ◽  
Vol 150 ◽  
pp. 174-187 ◽  
Author(s):  
Kouedeu Annie Francie ◽  
Kenne Jean-Pierre ◽  
Dejax Pierre ◽  
Songmene Victor ◽  
Polotski Vladimir

2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Eka Susilowati

The greatest solution of an inequality KX X LX to solve the optimalcontrol problem for P-Temporal Event Graphs, which is to nd the optimal control thatmeets the constraints on the output and constraints imposed on the adjusted model prob-lem (the model matching problem). We give the greatest solution K X X L Xand X H with K; L;X;H matrices whose are entries in a complete idempotent semir-ings. Furthermore, the authors examine the existence of a sucient condition of theprojector in the set of solutions of inequality K X X L X with K; L;X matrixwhose entries are in the complete idempotent semiring. Projectors can be very necessaryto synthesize controllers in manufacturing systems that are constrained by constraintsand some industrial applications. The researcher then examines the requirements forthe presence of the greatest solution was called projector in the set of solutions of theinequality K X X L X with K; L;X matrices whose are entries in an completeidempotent semiring of interval. Researchers describe in more detail the proof of theproperties used to resolve the inequality K X X L X. Before that, we givethe greatest solution of the inequality KX X LX and X G with K; L;X;Gmatrices whose are entries in an complete idempotent semiring of interval


2005 ◽  
Vol 2005 (3) ◽  
pp. 257-279 ◽  
Author(s):  
M. Senthil Arumugam ◽  
M. V. C. Rao

This paper presents several novel approaches of particle swarm optimization (PSO) algorithm with new particle velocity equations and three variants of inertia weight to solve the optimal control problem of a class of hybrid systems, which are motivated by the structure of manufacturing environments that integrate process and optimal control. In the proposed PSO algorithm, the particle velocities are conceptualized with the local best (orpbest) and global best (orgbest) of the swarm, which makes a quick decision to direct the search towards the optimal (fitness) solution. The inertia weight of the proposed methods is also described as a function of pbest and gbest, which allows the PSO to converge faster with accuracy. A typical numerical example of the optimal control problem is included to analyse the efficacy and validity of the proposed algorithms. Several statistical analyses including hypothesis test are done to compare the validity of the proposed algorithms with the existing PSO technique, which adopts linearly decreasing inertia weight. The results clearly demonstrate that the proposed PSO approaches not only improve the quality but also are more efficient in converging to the optimal value faster.


Sign in / Sign up

Export Citation Format

Share Document