Optimal Control Policy for Environment-Conscious Manufacturing Systems

2007 ◽  
pp. 473-489
Author(s):  
Kenichi Nakashima
1999 ◽  
Vol 32 (2) ◽  
pp. 237-242
Author(s):  
Dong-Ping Song ◽  
Wei Xing ◽  
You-Xian Sun ◽  
Tie-Jun Wu

Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2863
Author(s):  
Napasool Wongvanich ◽  
I-Ming Tang ◽  
Marc-Antoine Dubois ◽  
Puntani Pongsumpun

Hand, foot and mouth disease (HFMD) is a virulent disease most commonly found in East and Southeast Asia. Symptoms include ulcers or sores, inside or around the mouth. In this research, we formulate the dynamic model of HFMD by using the SEIQR model. We separated the infection episodes where there is a higher outbreak and a lower outbreak of the disease associated with regional residency, with the higher level of outbreak occurring in the urban region, and a lower outbreak level occurring in the rural region. We developed two different optimal control programs for the types of outbreaks. Optimal Control Policy 1 (OPC1) is limited to the use of treatment only, whereas Optimal Control Policy 2 (OPC2) includes vaccination along with the treatment. The Pontryagin’s maximum principle is used to establish the necessary and optimal conditions for the two policies. Numerical solutions are presented along with numerical sensitivity analyses of the required control efforts needed as the control parameters are changed. Results show that the time tmax required for the optimal control effort to stay at the maximum amount umax exhibits an intrinsic logarithmic relationship with respect to the control parameters.


2015 ◽  
Vol 52 (4) ◽  
pp. 909-925 ◽  
Author(s):  
Dacheng Yao ◽  
Xiuli Chao ◽  
Jingchen Wu

In this paper we consider an inventory system with increasing concave ordering cost and average cost optimization criterion. The demand process is modeled as a Brownian motion. Porteus (1971) studied a discrete-time version of this problem and under the strong condition that the demand distribution belongs to the class of densities that are finite convolutions of uniform and/or exponential densities (note that normal density does not belong to this class), an optimal control policy is a generalized (s, S) policy consisting of a sequence of (si, Si). Using a lower bound approach, we show that an optimal control policy for the Brownian inventory model is determined by a single pair (s, S).


Sign in / Sign up

Export Citation Format

Share Document