292 Assessment of left ventricular longitudinal contraction during stress echocardiography using Doppler myocardial imaging

1999 ◽  
Vol 1 ◽  
pp. S20-S20
Author(s):  
J AVIERINOS ◽  
G HABIB ◽  
C MEDAIL ◽  
M GARCIA ◽  
F BIOU ◽  
...  
2020 ◽  
Vol 15 (6) ◽  
pp. 813-819
Author(s):  
S. N. Koretskiy ◽  
O. M. Drapkina ◽  
F. B. Shukurov ◽  
D. K. Vasiliev

Stress echocardiography is a modern widely used method of noninvasive diagnosis of coronary heart disease and stratification of the risk of cardiovascular complications. In addition, exercise echocardiography is an important tool to clarify the localization of ischemia and establish a symptomassociated artery for management of patient with known coronary angiography data. This is especially important in multivessel lesions, the presence of an occluded artery or borderline stenosis. Currently, various stress agents are used for stress echocardiography in clinical practice: pharmacological drugs (dobutamine or adenosine), transesophageal or endocardial pacing, treadmill, semi-supine bicycle. To detect signs of ischemia usually used only visual estimation of local contractility in the two-dimensional gray-scale mode. Modern modes of myocardial imaging, such as speckletracking echocardiography or three-dimensional visualization, are practically not used. In the presented clinical case, the possibility of combining standard and modern imaging modes to clarify the localization and quantification of ischemia in multivessel coronary lesions, including chronic artery occlusion, is shown. As a stress agent, a semi-supine bicycle was chosen, the use of which allowed to obtain a qualitative image of the left ventricular myocardium at rest and at peak load, suitable for assessing deformation and threedimensional visualization. Evaluation of left ventricular myocardial deformation by speckle-tracking echocardiography was more accurate than standard diagnosis in detecting signs of ischemia in a patient with multivessel lesions. Three-dimensional imaging was inferior in sensitivity to speckletracking stress echocardiography and, at present, seems to have more research value.


Author(s):  
Luc A. Pierard ◽  
Lauro Cortigiani

Stress echocardiography is a widely used method for assessing coronary artery disease, due to its high diagnostic and prognostic value. While inducible ischaemia predicts an unfavourable outcome, its absence is associated with a low risk of future cardiac events. The method provides superior diagnostic and prognostic information than standard exercise electrocardiography and perfusion myocardial imaging in specific clinical subsets, such as women, hypertensive patients, and patients with left bundle branch block. Stress echocardiography allows effective risk assessment also in the diabetic population. The evaluation of coronary flow reserve of the left anterior descending artery by transthoracic Doppler adds diagnostic and prognostic information to that of standard stress test. Stress echocardiography is indicated in the cases when exercise electrocardiography is unfeasible, uninterpretable or gives ambiguous result, and when ischaemia during the test is frequently a false-positive response, as in hypertensive patients, women, and patients with left ventricular hypertrophy. Viability detection represents another application of stress echocardiography. The documentation of a large amount of viable myocardium predicts improved ejection fraction, reverse remodelling, and improved outcome following revascularization in patients with ischaemic cardiomyopathy. Moreover, stress echocardiography can aid significantly in clinical decision-making in patients with valvular heart disease through dynamic assessment of primary or secondary mitral regurgitation, transvalvular gradients, and pulmonary artery systolic pressure, as well as before vascular surgery due to the excellent negative predictive value. Finally, stress echocardiography allows effective risk stratification in patients with hypertrophic cardiomyopathy through evaluation of inducible ischaemia, coronary flow reserve, and intraventricular gradient.


2006 ◽  
Vol 7 (7) ◽  
pp. 480-490
Author(s):  
Pio Caso ◽  
Antonello DʼAndrea ◽  
Paolo Trambaiolo ◽  
Giovanni Di Salvo ◽  
Sergio Severino ◽  
...  

Author(s):  
Nuno Cardim ◽  
Denis Pellerin ◽  
Filipa Xavier Valente

Hypertrophic cardiomyopathy is a common inherited heart disease caused by genetic mutations in cardiac sarcomeric proteins. Although most patients are asymptomatic and many remain undiagnosed, the clinical presentation and natural history include sudden cardiac death, heart failure, and atrial fibrillation. Echocardiography plays an essential role in the diagnosis, serial monitoring, prognostic stratification, and family screening. Advances in Doppler myocardial imaging and deformation analysis have improved preclinical diagnosis as well as the differential diagnosis of left ventricular hypertrophy. Finally, echocardiography is closely involved in patient selection and in intraoperative guidance and monitoring of septal reduction procedures. This chapter describes the pathophysiology, clinical presentation, role of echocardiography, morphological features, differential diagnosis, diagnostic criteria in first-degree relatives, echo guidance for the treatment of symptomatic left ventricular outflow tract obstruction, and follow-up and monitoring of patients with hypertrophic cardiomyopathy.


Sign in / Sign up

Export Citation Format

Share Document