velocity mapping
Recently Published Documents


TOTAL DOCUMENTS

434
(FIVE YEARS 41)

H-INDEX

57
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
pp. 152
Author(s):  
Zuzana Hlubocká ◽  
Radka Kočková ◽  
Hana Línková ◽  
Alena Pravečková ◽  
Jaroslav Hlubocký ◽  
...  

Reliable quantification of aortic regurgitation (AR) severity is essential for clinical management. We aimed to compare quantitative and indirect echo-Doppler indices to quantitative cardiac magnetic resonance (CMR) parameters in asymptomatic chronic severe AR. Methods and Results: We evaluated 104 consecutive patients using echocardiography and CMR. A comprehensive 2D, 3D, and Doppler echocardiography was performed. The CMR was used to quantify regurgitation fraction (RF) and volume (RV) using the phase-contrast velocity mapping technique. Concordant grading of AR severity with both techniques was observed in 77 (74%) patients. Correlation between RV and RF as assessed by echocardiography and CMR was relatively good (rs = 0.50 for RV, rs = 0.40 for RF, p < 0.0001). The best correlation between indirect echo-Doppler and CMR parameters was found for diastolic flow reversal (DFR) velocity in descending aorta (rs = 0.62 for RV, rs = 0.50 for RF, p < 0.0001) and 3D vena contracta area (VCA) (rs = 0.48 for RV, rs = 0.38 for RF, p < 0.0001). Using receiver operating characteristic analysis, the largest area under curve (AUC) to predict severe AR by CMR RV was observed for DFR velocity (AUC = 0.79). DFR velocity of 19.5 cm/s provided 78% sensitivity and 80% specificity. The AUC for 3D VCA to predict severe AR by CMR RV was 0.73, with optimal cut-off of 26 mm2 (sensitivity 80% and specificity 66%). Conclusions: Out of the indirect echo-Doppler indices of AR severity, DFR velocity in descending aorta and 3D vena contracta area showed the best correlation with CMR-derived RV and RF in patients with chronic severe AR.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jennifer Riccio ◽  
Alejandro Alcaine ◽  
Sara Rocher ◽  
Laura Martinez-Mateu ◽  
Sergio Laranjo ◽  
...  

Introduction: The omnipolar electrogram method was recently proposed to try to generate orientation-independent electrograms. It estimates the electric field from the bipolar electrograms of a clique, under the assumption of locally plane and homogeneous propagation. The local electric field evolution over time describes a loop trajectory from which omnipolar signals in the propagation direction, substrate and propagation features, are derived. In this work, we propose substrate and conduction velocity mapping modalities based on a modified version of the omnipolar electrogram method, which aims to reduce orientation-dependent residual components in the standard approach.Methods: A simulated electrical propagation in 2D, with a tissue including a circular patch of diffuse fibrosis, was used for validation. Unipolar electrograms were calculated in a multi-electrode array, also deriving bipolar electrograms along the two main directions of the grid. Simulated bipolar electrograms were also contaminated with real noise, to assess the robustness of the mapping strategies against noise. The performance of the maps in identifying fibrosis and in reproducing unipolar reference voltage maps was evaluated. Bipolar voltage maps were also considered for performance comparison.Results: Results show that the modified omnipolar mapping strategies are more accurate and robust against noise than bipolar and standard omnipolar maps in fibrosis detection (accuracies higher than 85 vs. 80% and 70%, respectively). They present better correlation with unipolar reference voltage maps than bipolar and original omnipolar maps (Pearson's correlations higher than 0.75 vs. 0.60 and 0.70, respectively).Conclusion: The modified omnipolar method improves fibrosis detection, characterization of substrate and propagation, also reducing the residual sensitivity to directionality over the standard approach and improving robustness against noise. Nevertheless, studies with real electrograms will elucidate its impact in catheter ablation interventions.


2021 ◽  
Author(s):  
Rongxing Li ◽  
Yuan Cheng ◽  
Haotian Cui ◽  
Menglian Xia ◽  
Xiaohan Yuan ◽  
...  

Abstract. Antarctic ice velocity maps describe the ice flow dynamics of the ice sheet and are one of the primary components used to estimate the Antarctic mass balance and contribution to global sea level changes. In comparison to velocity maps covering monthly to weekly time spans derived from the images of optical imaging satellites taken in recent decades, historical maps, from before the 1990s, generally cover longer time spans, e.g., over 10 years, due to the scarce spatial and temporal coverage of earlier satellite image data. We found velocity overestimations in such long-term maps that can reach from ~69 m a−1 (7-year span) in Totten Glacier, East Antarctica, up to ~930 m a−1 (10-year span) in Pine Island, West Antarctica. We propose an innovative Lagrangian velocity-based method for overestimation correction without the use of field observations or additional image data. The method is validated by using a set of “ground truth” velocity maps for Totten Glacier which are produced from high-quality Landsat 8 images from 2013 to 2020. Subsequently, the validated method is applied to a historical velocity map of the David Glacier region from images from 1972–1989 acquired during Landsat 1, 4 and 5 satellite missions. It is demonstrated that velocity overestimations of up to 39 m a−1 for David Glacier and 69 m a−1 for Totten Glacier can be effectively corrected. Furthermore, temporal acceleration information, e.g., on calving events, is preserved in the corrected velocity maps and can be used for long-term ice flow dynamics analysis. We recommend that overestimations of more than the velocity mapping uncertainty (1σ) be corrected. This velocity overestimation correction method can be applied to the production of regional and ice sheet-wide historical velocity maps from long-term satellite images.


Author(s):  
S. Luo ◽  
Y. Cheng ◽  
Z. Li ◽  
Y. Wang ◽  
K. Wang ◽  
...  

Abstract. Recent research indicates that the estimated elevation changes and associated mass balance in East Antarctica are of some degree of uncertainty; a light accumulation has occurred in its vast inland regions, while mass loss in Wilkes Land appears significant. It is necessary to study the mass change trend in the context of a long period of the East Antarctic Ice Sheet (EAIS). The input-output method based on surface ice flow velocity and ice thickness is one of the most important ways to estimate the mass balance, which can provide longer-term knowledge of mass balance because of the availability of the early satellites in 1960s. In this study, we briefly describe the method of extracting ice velocity based on the historical optical images from 1960s to 1980s. Based on the draft ice velocity map of the EAIS using this method, we conduct a series of validation experiments, including comparisons with in-situ measurement, existing historical maps and rock outcrop dataset. Finally, we use the input-output method to estimate mass balance in some regions of EAIS using the generated velocity map.


2021 ◽  
pp. SP517-2020-173
Author(s):  
Aidan E. Foley ◽  
Stephen R. H. Worthington

AbstractThe conceptualisations of matrix, fracture and fissure porosity are important for understanding relative controls on storage and flow of groundwater, and the transport of solutes (and non-aqueous phase liquids) within chalk aquifers. However, these different types of porosity, rather than being entirely distinct, represent elements in a continuum of void sizes contributing to the total porosity of the aquifer. Here we define such a continuum and critically examine the selection of appropriate values of effective porosity, a widely-used parameter for mass transport modelling in aquifers. Effective porosity is a transient phenomenon, related to the porosity continuum by the timescales under which mass transport occurs. An analysis of 55 tracer tests and 20 well inflow tests in English chalk aquifers identifies spatial scaling in groundwater velocity and groundwater flow respectively, which are interpreted within the context of the wider literature on carbonate aquifers globally. We advance transport modelling in the Chalk by developing a fissure aperture velocity mapping method using transmissivity data from existing regional groundwater models, together with the identified transient and spatial scaling phenomena. The results show that chalk aquifers exhibit widespread rapid groundwater flow which may transport contaminants rapidly in almost any setting.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5403807


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Albert Mollén ◽  
M. F. Adams ◽  
M. G. Knepley ◽  
R. Hager ◽  
C. S. Chang

The global total- $f$ gyrokinetic particle-in-cell code XGC, used to study transport in magnetic fusion plasmas or to couple with a core gyrokinetic code while functioning as an edge gyrokinetic code, implements a five-dimensional continuum grid to perform the dissipative operations, such as plasma collisions, or to exchange the particle distribution function information with a core code. To transfer the distribution function between marker particles and a rectangular two-dimensional velocity-space grid, XGC employs a bilinear mapping. The conservation of particle density and momentum is accurate enough in this bilinear operation, but the error in the particle energy conservation can become undesirably large and cause non-negligible numerical heating in a steep edge pedestal. In the present work we update XGC to use a novel mapping technique, based on the calculation of a pseudo-inverse, to exactly preserve moments up to the order of the discretization space. We describe the details of the implementation and we demonstrate the reduced interpolation error for a tokamak test plasma using first- and second-order elements with the pseudo-inverse method and comparing with the bilinear mapping.


Sign in / Sign up

Export Citation Format

Share Document