Chromosomal Localization of the 5S and 45S rDNA Sites and 5S rDNA Sequence Analysis in Nelumbo Species

2011 ◽  
Vol 10 (5) ◽  
pp. 679-685
Author(s):  
Ying DIAO ◽  
Ming-quan ZHOU ◽  
Zhong-li HU
Genome ◽  
2016 ◽  
Vol 59 (7) ◽  
pp. 449-457 ◽  
Author(s):  
Zhen-Tao Zhang ◽  
Shu-Qiong Yang ◽  
Zi-Ang Li ◽  
Yun-Xia Zhang ◽  
Yun-Zhu Wang ◽  
...  

Ribosomal DNAs are useful cytogenetic markers for chromosome analysis. Studies investigating site numbers and distributions of rDNAs have provided important information for elucidating genome organization and chromosomal relationships of many species by fluorescence in situ hybridization. But relevant studies are scarce for species of the genus Cucumis, especially in wild species. In the present study, FISH was conducted to investigate the organization of 45S and 5S rDNA among 20 Cucumis accessions, including cultivars and wild accessions. Our results showed that the number of 45S rDNA sites varied from one to five pairs in different accessions, and most of these sites are located at the terminal regions of chromosomes. Interestingly, up to five pairs of 45S rDNA sites were observed in C. sativus var. sativus, the species which has the lowest chromosome number, i.e., 2n = 14. Only one pair of 5S rDNA sites was detected in all accessions, except for C. heptadactylus, C. sp, and C. spp that had two pairs of 5S rDNA sites. The distributions of 5S rDNA sites showed more variation than 45S rDNA sites. The phylogenetic analysis in this study showed that 45S and 5S rDNA have contrasting evolutionary patterns. We find that 5S rDNA has a polyploidization-related tendency towards the terminal location from an interstitial location but maintains a conserved site number, whereas the 45S rDNA showed a trend of increasing site number but a relatively conserved location.


2005 ◽  
Vol 96 (2) ◽  
pp. 191-200 ◽  
Author(s):  
MAGDALENA VAIO ◽  
PABLO SPERANZA ◽  
JOSÉ FRANCISCO VALLS ◽  
MARCELO GUERRA ◽  
CRISTINA MAZZELLA

Phytotaxa ◽  
2018 ◽  
Vol 381 (1) ◽  
pp. 141 ◽  
Author(s):  
YAN-LI HAN ◽  
DAI-KE TIAN ◽  
NAI-FENG FU ◽  
YAN XIAO ◽  
ZONG-YUN LI ◽  
...  

The rDNA sites are useful chromosome landmarks and can provide valuable information for species identification and species relationships. In this study, we investigated the distribution of 5S and 45S rDNA sites in 29 species of Begonia sect. Coelocentrum Irmsch. using a two-colour fluorescence in situ hybridization (FISH) technique. This is the first report of chromosomal rDNA mapping in Begonia species. The analyzed species showed considerable diversity in rDNA distribution patterns. The 45S rDNA signals are always located in terminal regions on 1−4 chromosomes, while 5S rDNA signals are mainly located at proximal regions on 2−8 chromosomes, varying from specific major signals to highly dispersed minor signals. Based on rDNA FISH patterns, most of the investigated species could be distinguished from each other and species relationships were identified. In addition, the results provided clear proof that B. huangii is of hybrid origin and the triploid B. longgangensis was allotriploid rather than autotriploid as suggested before. The data will provide a useful reference for evaluation, conservation and utilization of the natural resources of the mega-diverse genus Begonia.


2020 ◽  
Author(s):  
Dan Su ◽  
Lei Chen ◽  
Jianying Sun ◽  
Luyue Zhang ◽  
Runfei Gao ◽  
...  

Abstract Background: In recent years, purple-fleshed sweet potato has been paid more and more attention because of its high nutritional value. However, the current studies on purple-fleshed sweet potato were still focused on the research and production of the related products. The research on its cytogenetics is relatively lagging behind, which cannot satisfy the study of genetic diversity of purple-fleshed sweet potato. Therefore, we carried out cytogenetic analysis on 76 purple-fleshed sweet potato cultivars, aim to analyze the chromosome structure and distribution of 45S rDNA and 5S rDNA in 76 purple-fleshed sweet potato cultivars.Results: We have found that only 62 purple-fleshed sweet potato cultivars with 90 chromosomes, and the others were aneuploid with 88, 89, 91, 92 chromosomes. The number of 45S rDNA in 76 purple-fleshed sweet potato cultivars varies from 16 to 21, with different signal sizes and intendities, and localized at the terminal or satellite of chromosomes. The number of 5S rDNA were relatively stable, 74 of the varieties investigated contained 6 sites, located at the terminal of chromosomes and near centromere. Only the Quanzishu 96 has 7 5S rDNA sites, and Yuzixiang 10 has 5 5S rDNA sites. In addition, rDNA analysis was also performed on two parents of Quanzishu 96. Both the two parents had 18 45S rDNA sites and 6 5S rDNA sites, which were different from the results of Quanzishu 96.Conclusions: For hexaploid sweet potato cultivars, there is genetic instability between purple-fleshed sweet potato cultivars. The 45S rDNA sites showed numerical variation, whereas conserved number of 5S rDNA sites were observed.


2003 ◽  
Vol 128 (5) ◽  
pp. 736-740 ◽  
Author(s):  
Young A Choi ◽  
Ryutaro Tao ◽  
Keizo Yonemori ◽  
Akira Sugiura

5S ribosomal DNA (rDNA) was visualized on the somatic metaphase chromosome of persimmon (Diospyros kaki) and ten wild Diospyros species by fluorescent in situ hybridization (FISH). The digoxigenin (DIG)-labeled 5S rDNA probe was hybridized onto the chromosomes and visualized by incubation with anti-DIG-fluorescein isothiocyanate (FITC). Strong signals of 5S rDNA probe were observed on several chromosomes of Diospyros species tested. Furthermore, multicolor FISH using 5S and 45S rDNA probes differently labeled with DIG and biotin, revealed separate localization of the two rDNA genes on different chromosomes of Diospyros species tested, suggesting that 5S and 45S rDNA sites can be used as chromosome markers in Diospyros. The number of 5S rDNA sites varied with the Diospyros species. More 5S rDNA sites were observed in four diploid species native to Southern Africa than in three Asian diploid species. The former had four or six 5S rDNA sites while the latter had two. Three Asian polyploidy species had four to eight 5S rDNA sites. Among the Asian species, the number of 5S rDNA sites seemed to increase according to ploidy level of species. These features of 5S rDNA sites were very similar to those of 45S rDNA sites in Diospyros. Phylogenetic relationship between D. kaki and wild species tested are discussed based on the number and chromosomal distribution of 5S and 45S rDNA.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 865
Author(s):  
Dan Su ◽  
Lei Chen ◽  
Jianying Sun ◽  
Luyue Zhang ◽  
Runfei Gao ◽  
...  

In recent years, the purple-fleshed sweet potato has attracted more attention because of its high nutritional value. The cytogenetics of this crop is relatively unexplored, limiting our knowledge on its genetic diversity. Therefore, we conducted cytogenetic analysis of 76 purple-fleshed sweet potato cultivars to analyze the chromosome structure and distribution of 45S and 5S rDNA. We noted that only 62 cultivars had 90 chromosomes, and the others were aneuploid with 88, 89, 91, or 92 chromosomes. The number of 45S rDNA in the 76 cultivars varied from 16 to 21; these sites showed different signal sizes and intensities and were localized at the chromosomal termini or satellite. The number of 5S rDNA was relatively stable; 74 cultivars showed six sites located at the chromosomal sub-terminal or near the centromere. Only the ‘Quanzishu 96’ and ‘Yuzixiang 10’ showed seven and five 5S rDNA sites, respectively. Additionally, both parent cultivars of ‘Quanzishu 96’ showed 18 45S and six 5S rDNA sites. Overall, our results indicate a moderate diversity in the distribution pattern of rDNAs. Our findings provide comprehensive cytogenetic information for the identification of sweet potato chromosomes, which can be useful for developing a high-quality germplasm resource.


2015 ◽  
Vol 146 (3) ◽  
pp. 243-249 ◽  
Author(s):  
Fernando Roa ◽  
Marcelo Guerra

5S and 45S rDNA sites are the best mapped chromosome regions in eukaryotic chromosomes. In this work, a database was built gathering information about the position and number of 5S rDNA sites in 784 plant species, aiming to identify patterns of distribution along the chromosomes and its correlation with the position of 45S rDNA sites. Data revealed that in most karyotypes (54.5%, including polyploids) two 5S rDNA sites (a single pair) are present, with 58.7% of all sites occurring in the short arm, mainly in the proximal region. In karyotypes of angiosperms with only 1 pair of sites (single sites) they are mostly found in the proximal region (52.0%), whereas in karyotypes with multiple sites the location varies according to the average chromosome size. Karyotypes with multiple sites and small chromosomes (<3 µm) often display proximal sites, while medium-sized (between 3 and 6 µm) and large chromosomes (>6 µm) more commonly show terminal or interstitial sites. In species with holokinetic chromosomes, the modal value of sites per karyotype was also 2, but they were found mainly in a terminal position. Adjacent 5S and 45S rDNA sites were often found in the short arm, reflecting the preferential distribution of both sites in this arm. The high frequency of genera with at least 1 species with adjacent 5S and 45S sites reveals that this association appeared several times during angiosperm evolution, but it has been maintained only rarely as the dominant array in plant genera.


Genome ◽  
2001 ◽  
Vol 44 (5) ◽  
pp. 911-918 ◽  
Author(s):  
Ki-Byung Lim ◽  
Jannie Wennekes ◽  
J Hans de Jong ◽  
Evert Jacobsen ◽  
Jaap M van Tuyl

Detailed karyotypes of Lilium longiflorum and L. rubellum were constructed on the basis of chromosome arm lengths, C-banding, AgNO3 staining, and PI-DAPI banding, together with fluorescence in situ hybridisation (FISH) with the 5S and 45S rDNA sequences as probes. The C-banding patterns that were obtained with the standard BSG technique revealed only few minor bands on heterologous positions of the L. longiflorum and L. rubellum chromosomes. FISH of the 5S and 45S rDNA probes on L. longiflorum metaphase complements showed overlapping signals at proximal positions of the short arms of chromosomes 4 and 7, a single 5S rDNA signal on the secondary constriction of chromosome 3, and one 45S rDNA signal adjacent to the 5S rDNA signal on the subdistal part of the long arm of chromosome 3. In L. rubellum, we observed co-localisation of the 5S and 45S rDNA sequences on the short arm of chromosomes 2 and 4 and on the long arms of chromosomes 2 and 3, and two adjacent bands on chromosome 12. Silver staining (Ag-NOR) of the nucleoli and NORs in L. longiflorum and L. rubellum yielded a highly variable number of signals in interphase nuclei and only a few faint silver deposits on the NORs of mitotic metaphase chromosomes. In preparations stained with PI and DAPI, we observed both red- and blue-fluorescing bands at different positions on the L. longiflorum and L. rubellum chromosomes. The red-fluorescing or so-called reverse PI-DAPI bands always coincided with rDNA sites, whereas the blue-fluorescing DAPI bands corresponded to C-bands. Based on these techniques, we could identify most of chromosomes of the L. longiflorum and L. rubellum karyotypes.Key words: fluorescence in situ hybridisation, FISH, 5S rDNA, 45S rDNA, C-banding, reverse PI-DAPI banding.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Magdy Hussein Abd El-Twab ◽  
Katsuhiko Kondo

Present study has been done to investigate artificial interspecific crossability between Japanese Chrysanthemum yoshinaganthum (2n=36) and Chinese C. vestitum (2n=54), which were cultured in vitro and in vivo and characterization of their artificial hybrid chromosomes and type of changes assessed by FISH and GISH. GISH was applied by using biotin-labeled total genomic DNA probe of C. vestitum, which were mixed with blocking DNA of C. yoshinaganthum. Approximately 18 yellow-green colored chromosomes of C. vestitum were detected by the probe, approximately 18 yellow-red- mixed colored chromosomes could be common chromosomes of the two species, and nine chromosomes were relatively red of Ch. yoshinaganthum that were not detected by the probe. The expected average of FISH six signals of 5S rDNA sites and ten of 45S rDNA were observed on the chromosomes of three and six hybrid plants, respectively. Multicolor FISH signals showed unexpected average of seven and 14 yellow signals of 5S rDNA sites on seven and thirteen chromosomes simultaneous with ten and 11 red signals of 45S rDNA sites on ten and 11 chromosomes which were detected by the probes respectively. FISH mapping of the 5S rDNA at terminal sites was detected in hybrid chromosomes, for the first time. Yellow-color signals of the telomeres were detected by the biotin-labeled probe of the PCR-amplified telomeric probe in interphase and terminal sites in metaphase. All chromosomes that showed terminal signals except four chromosomes showed subterminal sites of telomeres indicating the presence of translocations.


Sign in / Sign up

Export Citation Format

Share Document