45s rdna
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 38)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 78 (6) ◽  
pp. 414-425
Author(s):  
Nourdine Baik ◽  
◽  
Houda Bandou ◽  
Miriam Gonzales Garcia ◽  
Elena Benavente ◽  
...  

In continuation of our previous research we carried out the karyological investigation of 53 populations of four Aegilops species (A. geniculata, A. triuncialis, A. ventricosa, and A. neglecta) sampled in different eco-geographical habitats in Algeria. The genetic variability of the chromosomal DNA loci of the same collection of Aegilops is highlighted by the Fluorescence In Situ Hybridization technique (FISH) using three probes: 5S rDNA, 45S rDNA, and repetitive DNA (pSc119.2). We found that the two rDNA loci (5S and 45S) hybridized with some chromosomes and showed a large genetic polymorphism within and between the four Aegilops species, while the repetitive DNA sequences (pSc119.2) hybridized with all chromosomes and differentiated the populations of the mountains with a humid bioclimate from the populations of the steppe regions with an arid bioclimate. However, the transposition of the physical maps of the studied loci (5S rDNA, 45S rDNA, and pSc119.2) with those of other collections revealed the existence of new loci in Aegilops from Algeria.


2021 ◽  
Author(s):  
Kwang-Soo Cho ◽  
Hyun-Oh Lee ◽  
Sang-Choon Lee ◽  
Hyun-Jin Park ◽  
Jin-Hee Seo ◽  
...  

Abstract Interspecific somatic hybridization has been performed in potato breeding experiments to increase plant resistance against biotic and abiotic stress conditions. We analyzed the mitochondrial and plastid genomes and 45S nuclear ribosomal DNA (45S rDNA) for the cultivated potato (S. tuberosum, St), wild potato (S. commersonii, Sc), and their somatic hybrid (StSc). Complex genome components and structure, such as the hybrid form of 45S rDNA in StSc, unique plastome in Sc, and recombinant mitogenome were identified. However, the mitogenome exhibited dynamic multipartite structures in both species as well as in the somatic hybrid. In St, the mitogenome is 756,058 bp and is composed of five subgenomes ranging from 297,014 to 49,171 bp in St. In Sc, it is 552,103 bp long and is composed of two sub-genomes of 338,427 and 213,676 bp length. StSc has 447,645 bp long mitogenome with two subgenomes of length 398,439 and 49,206 bp. The mitogenome structure exhibited dynamic recombination mediated by tandem repeats; however, it contained highly conserved genes in the three species. Among the 35 protein-coding genes of the StSc mitogenome, 21 were identical for all the three species, and 12 and 2 were unique in Sc and St, respectively. The recombinant mitogenome might be derived from homologous recombination between both species during somatic hybrid development.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0257115
Author(s):  
Shivangi Thakur ◽  
Upendra Kumar ◽  
Rashmi Malik ◽  
Darshana Bisht ◽  
Priyanka Balyan ◽  
...  

Cymbopogon, commonly known as lemon grass, is one of the most important aromatic grasses having therapeutic and medicinal values. FISH signals on somatic chromosome spreads off Cymbopogon species indicated the localization of 45S rDNA on the terminal region of short arms of a chromosome pair. A considerable interspecific variation in the intensity of 45S rDNA hybridization signals was observed in the cultivars of Cymbopogon winterianus and Cymbopogon flexuosus. Furthermore, in all the varieties of C. winterianus namely Bio-13, Manjari and Medini, a differential distribution of 45S rDNA was observed in a heterologous pair of chromosomes 1. The development of C. winterianus var. Manjari through gamma radiation may be responsible for breakage of fragile rDNA site from one of the chromosomes of this heterologous chromosome pair. While, in other two varieties of C. winterianus (Bio-13 and Medini), this variability may be because of evolutionary speciation due to natural cross among two species of Cymbopogon which was fixed through clonal propagation. However, in both the situations these changes were fixed by vegetative method of propagation which is general mode of reproduction in the case of C. winterianus.


2021 ◽  
Vol 22 (21) ◽  
pp. 11403
Author(s):  
Jana Sochorová ◽  
Francisco Gálvez ◽  
Roman Matyášek ◽  
Sònia Garcia ◽  
Aleš Kovařík

We report on a major update to the animal rDNA loci database, which now contains cytogenetic information for 45S and 5S rDNA loci in more than 2600 and 1000 species, respectively. The data analyses show the following: (i) A high variability in 5S and 45S loci numbers, with both showing 50-fold or higher variability. However, karyotypes with an extremely high number of loci were rare, and medians generally converged to two 5S sites and two 45S rDNA sites per diploid genome. No relationship was observed between the number of 5S and 45S loci. (ii) The position of 45S rDNA on sex chromosomes was relatively frequent in some groups, particularly in arthropods (14% of karyotypes). Furthermore, 45S rDNA was almost exclusively located in microchromosomes when these were present (in birds and reptiles). (iii) The proportion of active NORs (positively stained with silver staining methods) progressively decreased with an increasing number of 45S rDNA loci, and karyotypes with more than 12 loci showed, on average, less than 40% of active loci. In conclusion, the updated version of the database provides some new insights into the organization of rRNA genes in chromosomes. We expect that its updated content will be useful for taxonomists, comparative cytogeneticists, and evolutionary biologists. 


Author(s):  
E. Yu. Mitrenina ◽  
A. S. Erst ◽  
E. D. Badaeva ◽  
S. S. Alekseeva ◽  
G. N. Artemov

45S and 5S ribosomal DNA were originally localized on chromosomes of five species of winter aconits,namely, Eranthis cilicica, E. hyemalis (section Eranthis), E. pinnatifida, E. stellata и E. tanhoensis (section Shibateranthis).Fluorescence in situ hybridization was performed with oligonucleotide DNA probes Oligo-pTa71-2 and Oligo-5S rDNAof wheat that are complementary to 45S and 5S ribosomal DNA. In addition, oligonucleotide DNA probe (Oligo-5.8SrDNA-Ran, 50 b) for localization of 45S rDNA was designed and tested. This probe is based on the 5.8S rDNA sequencesof some species of fam. Ranunculaceae taken from GenBank. A specific hybridization of the Oligo-5S rDNA and Oligo5.8S rDNA-Ran probes with the chromosomes of Eranthis was shown. The use of the Oligo-pTa71-2 probe did not localizeclusters of 45S rDNA on chromosomes of studied species.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2358
Author(s):  
Nicole Bon Campomayor ◽  
Nomar Espinosa Waminal ◽  
Byung Yong Kang ◽  
Thi Hong Nguyen ◽  
Soo-Seong Lee ◽  
...  

Intergeneric crosses between Brassica species and Raphanus sativus have produced crops with prominent shoot and root systems of Brassica and R. sativus, respectively. It is necessary to discriminate donor genomes when studying cytogenetic stability in distant crosses to identify homologous chromosome pairing, and microsatellite repeats have been used to discriminate subgenomes in allopolyploids. To identify genome-specific microsatellites, we explored the microsatellite content in three Brassica species (B. rapa, AA, B. oleracea, CC, and B. nigra, BB) and R. sativus (RR) genomes, and validated their genome specificity by fluorescence in situ hybridization. We identified three microsatellites showing A, C, and B/R genome specificity. ACBR_msat14 and ACBR_msat20 were detected in the A and C chromosomes, respectively, and ACBR_msat01 was detected in B and R genomes. However, we did not find a microsatellite that discriminated the B and R genomes. The localization of ACBR_msat20 in the 45S rDNA array in ×Brassicoraphanus 977 corroborated the association of the 45S rDNA array with genome rearrangement. Along with the rDNA and telomeric repeat probes, these microsatellites enabled the easy identification of homologous chromosomes. These data demonstrate the utility of microsatellites as probes in identifying subgenomes within closely related Brassica and Raphanus species for the analysis of genetic stability of new synthetic polyploids of these genomes.


Author(s):  
Pengfei Liu ◽  
Yanhui Bi ◽  
Qian Zheng ◽  
Li Liu ◽  
Yu Du ◽  
...  

2021 ◽  
Author(s):  
Shivangi Thakur ◽  
Upendra Kumar ◽  
Rashmi Malik ◽  
Darshana Bisht ◽  
Priyanka Balyan ◽  
...  

AbstractCymbopogon, commonly known as lemon grass, is one of the most important aromatic grasses having therapeutic and medicinal values. FISH signals on somatic chromosome spreads off Cymbopogon species indicated the localization of 45S rDNA on the terminal region of short arms of a chromosome pair. A considerable interspecific variation in the intensity of 45S rDNA hybridization signals was observed in the cultivars of Cymbopogon winterianus and Cymbopogon flexuosus. Furthermore, in all the varieties of Cymbopogon winterianus namely Bio-13, Manjari and Medini, a differential distribution of 45S rDNA was observed in a heterologous pair of chromosome 1. The development of Cymbopogon winterianus var. Manjari through gamma radiation may be responsible for breakage of fragile rDNA site from one of the chromosomes of this heterologous chromosome pair. While, in other two varieties of Cymbopogon winterianus (Bio-13 and Medini), this variability may be because of evolutionary speciation due to natural cross among two species of Cymbopogon which was fixed through clonal propagation. However, in both the situations these changes were fixed by vegetative method of propagation which is general mode of reproduction in the case of Cymbopogon winterianus.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chung-Shien Wu ◽  
Edi Sudianto ◽  
Hui-Lung Chiu ◽  
Chih-Ping Chao ◽  
Shu-Miaw Chaw

Bananas (Musa spp.) are some of the most important fruit crops in the world, contributing up to US$10 billion in export values annually. In this study, we use high-throughput sequencing to obtain genomic resources of high-copy DNA molecules in bananas. We sampled 13 wild species and eight cultivars that represent the three genera (Ensete, Musa, and Musella) of the banana family (Musaceae). Their plastomic, 45S rDNA, and mitochondrial scaffolds were recovered from genome skimming data. Two major clades (Clades I & II) within Musa are strongly supported by the three genomic compartment data. We document, for the first time, that the plastomes of Musaceae have expanded inverted repeats (IR) after they diverged from their two close relatives, Heliconiaceae (the lobster-claws) and Strelitziaceae (the traveler's bananas). The presence/absence of rps19 within IR regions reinforces the two intra-generic clades within Musa. Our comparisons of the bananas' plastomic and mitochondrial DNA sequence trees aid in identifying hybrid bananas' parentage. As the mitochondrial genes of Musa have elevated substitution rates, paternal inheritance likely plays an influential role on the Musa mitogenome evolution. We propose genome skimming as a useful method for reliable genealogy tracing and phylogenetics in bananas.


2021 ◽  
pp. 1-6
Author(s):  
Hongyou Zhao ◽  
Shuang Li ◽  
Chunyong Yang ◽  
Ge Li ◽  
Yanfang Wang ◽  
...  

The genus <i>Dracaena</i> is the main source of dragon’s blood, which is a plant resin and has been used as traditional medicine since ancient times in different civilizations. However, the chromosome numbers and karyotypes present in this genus remain poorly understood. In this study, fluorescence in situ hybridization (FISH) using oligonucleotide probes for ribosomal DNAs (5S and 45S rDNA) and telomeric repeats (TTTAGGG)<sub>3</sub> was applied to analyze 4 related species: <i>Dracaena terniflora</i> Roxb., <i>Dracaena cambodiana</i> Pierre ex Gagnep., Aizong (<i>Dracaena</i> sp.), and <i>Dracaena cochinchinensis</i> (Lour.) S.C. Chen. In all 4 species, both 5S and 45S rDNA showed hybridization signals in the paracentromeric region of a pair of chromosomes; the sizes of the 45S rDNA signals were larger than those of the 5S rDNA. Importantly, the telomeric repeat signals were located in the telomeric regions of almost all chromosomes. The results indicated that the chromosome number of all 4 <i>Dracaena</i> species is 2n = 40, and the lengths of the mitotic metaphase chromosomes range from 0.99 to 2.98 μm. Our results provide useful cytogenetic information, which will be beneficial to future studies in genome structure of the genus <i>Dracaena</i>.


Sign in / Sign up

Export Citation Format

Share Document