Plants
Latest Publications


TOTAL DOCUMENTS

5768
(FIVE YEARS 5597)

H-INDEX

33
(FIVE YEARS 23)

Published By Mdpi Ag

2223-7747

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 227
Author(s):  
Arash Hemati ◽  
Hossein Ali Alikhani ◽  
Ladan Ajdanian ◽  
Mehdi Babaei ◽  
Behnam Asgari Lajayer ◽  
...  

Humic acid (HA) is a specific and stable component of humus materials that behaves similarly to growth stimulants, esp. auxin hormones, contributing to improving growth indices and performance of plants. As a rich source of HA, vermicompost (VC) is also a plant growth stimulating bio-fertilizer that can enhance growth indices and performance in plants. The purpose of the present study is to compare the influence of VC enriched with bacterial and/or fertilizer, commercial humic acid (CHA) extract, and indole-3-acetic acid (IAA) on improving growth characteristics and performance of rapeseed under greenhouse conditions. The results showed the complete superiority of VC over the CHA and IAA (approximately 8% increase in the dry weights of root and aerial organ and nearly three times increase in seed weight). The highest values of these indices were obtained with VC enriched with Nitrogen, Sulfur, and Phosphorus, Azotobacter chroococcum and Pseudomonas fluorescens; the lowest value was obtained with VC enriched with urea. Additionally, the application of 3% VC and the control involved the highest and lowest values in all traits, respectively. The SPAD (chlorophyll index) value and stem diameter were not significantly affected by different application levels of VC. Overall, the applications of IAA and the CHA were not found to be suitable and therefore not recommended.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 222
Author(s):  
Gian Marco Ludovici ◽  
Andrea Chierici ◽  
Susana Oliveira de Souza ◽  
Francesco d’Errico ◽  
Alba Iannotti ◽  
...  

The aim of this work is to analyze the effects of ionizing radiation and radionuclides (like 137Cs) in several higher plants located around the Fukushima Dai-ichi Nuclear Power Plant (FNPP), evaluating both their adaptive processes and evolution. After the FNPP accident in March 2011 much attention was focused to the biological consequences of ionizing radiation and radionuclides released in the area surrounding the nuclear plant. This unexpected mishap led to the emission of radionuclides in aerosol and gaseous forms from the power plant, which contaminated a large area, including wild forest, cities, farmlands, mountains, and the sea, causing serious problems. Large quantities of 131I, 137Cs, and 134Cs were detected in the fallout. People were evacuated but the flora continued to be affected by the radiation exposure and by the radioactive dusts’ fallout. The response of biota to FNPP irradiation was a complex interaction among radiation dose, dose rate, temporal and spatial variation, varying radiation sensitivities of the different plants’ species, and indirect effects from other events. The repeated ionizing radiations, acute or chronic, guarantee an adaptation of the plant species, demonstrating a radio-resistance. Consequently, ionizing radiation affects the genetic structure, especially during chronic irradiation, reducing genetic variability. This reduction is associated with the different susceptibility of plant species to chronic stress. This would confirm the adaptive theory associated with this phenomenon. The effects that ionizing radiation has on different life forms are examined in this review using the FNPP disaster as a case study focusing the attention ten years after the accident.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 220
Author(s):  
Ana Mariel Torres-Contreras ◽  
Antoni Garcia-Baeza ◽  
Heriberto Rafael Vidal-Limon ◽  
Isaias Balderas-Renteria ◽  
Mónica A Ramírez-Cabrera ◽  
...  

Human skin works as a barrier against the adverse effects of environmental agents, including ultraviolet radiation (UVR). Exposure to UVR is associated with a variety of harmful effects on the skin, and it is one of the most common health concerns. Solar UVR constitutes the major etiological factor in the development of cutaneous malignancy. However, more than 90% of skin cancer cases could be avoided with appropriate preventive measures such as regular sunscreen use. Plants, constantly irradiated by sunlight, are able to synthesize specialized molecules to fight against UVR damage. Phenolic compounds, alkaloids and carotenoids constitute the major plant secondary metabolism compounds with relevant UVR protection activities. Hence, plants are an important source of molecules used to avoid UVR damage, reduce photoaging and prevent skin cancers and related illnesses. Due to its significance, we reviewed the main plant secondary metabolites related to UVR protection and its reported mechanisms. In addition, we summarized the research in Mexican plants related to UV protection. We presented the most studied Mexican plants and the photoprotective molecules found in them. Additionally, we analyzed the studies conducted to elucidate the mechanism of photoprotection of those molecules and their potential use as ingredients in sunscreen formulas.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 226
Author(s):  
Marwa Hanafi ◽  
Wei Rong ◽  
Lucie Tamisier ◽  
Chadi Berhal ◽  
Nicolas Roux ◽  
...  

: The banana mild mosaic virus (BanMMV) (Betaflexiviridae, Quinvirinae, unassigned species) is a filamentous virus that infects Musa spp. and has a very wide geographical distribution. The current BanMMV indexing process for an accession requires the testing of no less than four plants cultivated in a greenhouse for at least 6 months and causes a significant delay for the distribution of the germplasm. We evaluated the sensitivity of different protocols for BanMMV detection from in vitro plants to accelerate the testing process. We first used corm tissues from 137 in vitro plants and obtained a diagnostic sensitivity (DSE) of only 61% when testing four plants per accession. After thermotherapy was carried out to eliminate BanMMV infection, the meristem was recovered and further grown in vitro. The same protocol was evaluated in parallel on the corm tissue surrounding the meristem, as a rapid screening to evaluate virus therapy success, and was compared to the results obtained following the standard protocol. The obtained results showed 28% false negatives when conducting testing from corm tissues, making this protocol unsuitable in routine processes. Furthermore, RT-PCR and high-throughput sequencing (HTS) tests were applied on tissues from the base (n = 39) and the leaves (n = 36). For RT-PCR, the average DSE per sample reached 65% from either the base or leaves. HTS was applied on 36 samples and yielded 100% diagnostic specificity (DSP) and 100% DSE, whatever the sampled tissue, allowing the identification of a new Betaflexiviridae species infecting Musa. These results suggest that a reliable diagnostic of BanMMV from in vitro plants using RT-PCR or HTS technologies might represent an efficient alternative for testing after greenhouse cultivation.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 223
Author(s):  
Michele Ferrari ◽  
Radiana Cozza ◽  
Matteo Marieschi ◽  
Anna Torelli

Sulfur (S) is essential for the synthesis of important defense compounds and in the scavenging potential of oxidative stress, conferring increased capacity to cope with biotic and abiotic stresses. Chromate can induce a sort of S-starvation by competing for uptake with SO42− and causing a depletion of cellular reduced compounds, thus emphasizing the role of S-transporters in heavy-metal tolerance. In this work we analyzed the sulfate transporter system in the freshwater green algae Scenedesmus acutus, that proved to possess both H+/SO42− (SULTRs) and Na+/SO42− (SLTs) plasma membrane sulfate transporters and a chloroplast-envelope localized ABC-type holocomplex. We discuss the sulfate uptake system of S. acutus in comparison with other taxa, enlightening differences among the clade Sphaeropleales and Volvocales/Chlamydomonadales. To define the role of S transporters in chromium tolerance, we analyzed the expression of SULTRs and SULPs components of the chloroplast ABC transporter in two strains of S. acutus with different Cr(VI) sensitivity. Their differential expression in response to Cr(VI) exposure and S availability seems directly linked to Cr(VI) tolerance, confirming the role of sulfate uptake/assimilation pathways in the metal stress response. The SULTRs up-regulation, observed in both strains after S-starvation, may directly contribute to enhancing Cr-tolerance by limiting Cr(VI) uptake and increasing sulfur availability for the synthesis of sulfur-containing defense molecules.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 224
Author(s):  
Malyaj Prajapati ◽  
Aakansha Manav ◽  
Jitender Singh ◽  
Pankaj Kumar ◽  
Amit Kumar ◽  
...  

Garlic (Allium sativum L.) plants exhibiting mosaics, deformation, and yellow stripes symptoms were identified in Meerut City, Uttar Pradesh, India. To investigate the viruses in the garlic samples, the method of high-throughput sequencing (HTS) was used. Complete genome of the garlic virus E (GarV-E) isolate (NCBI accession No. MW925710) was retrieved. The virus complete genome comprises 8450 nucleotides (nts), excluding the poly (A) tail at the 3′ terminus, with 5′ and 3′ untranslated regions (UTRs) of 99 and 384 nts, respectively, and ORFs encoding replicase with a conserved motif for RNA-dependent RNA polymerase (RdRP), TGB1, TGB2, TGB3, serine-rich protein, coat protein, and nucleic acid binding protein (NABP). The sequence homology shared 83.49–90.40% and 87.48–92.87% with those of GarV-E isolates available in NCBI at the nucleotide and amino acid levels, respectively. Phylogenetic analysis showed a close relationship of this isolate from India (MW925710) with GarV-E isolate YH (AJ292230) from Zhejiang, China. The presence of GarV-E was also confirmed by RT-PCR. The present study is the first report of GarV-E in garlic cultivar Yamuna Safed-3 grown in northern India. However, further studies are needed to confirm its role in symptom development, nationwide distribution, genetic diversity, and potential yield loss to the garlic in India.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 225
Author(s):  
Anh Tuan Le ◽  
Ju-Kyung Yu ◽  
Gyung-Deok Han ◽  
Thuong Kiet Do ◽  
Yong-Suk Chung

Hedyotis corymbosa (L.) Lam is a wild herb that is used in traditional Indian, Chinese, and African medicine. Light-emitting diode (LED) technology is paving the way to enhance crop production and inducing targeted photomorphogenic, biochemical, or physiological responses in plants. This study examines the efficiency of H. corymbosa (L.) Lam production under blue 450 nm and red 660 nm LED lights for overall plant growth, photosynthetic characteristics, and the contents of metabolite compounds. Our research showed that blue LED lights provided a positive effect on enhancing plant growth and overall biomass. In addition, blue LED lights are more effective in controlling the production of sucrose, starch, total phenolic compounds, and total flavonoid compared to red LED lights. However, blue and red LED lights played essential but different roles in photosynthetic characteristics. Our results showed the potential of colored LED light applications in improving farming methods and increasing metabolite production in herbs. LED lights are safer alternatives than genetically modified organisms or genome editing.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 221
Author(s):  
Muhammad Asyraf Mohd Amnan ◽  
Wan Mohd Aizat ◽  
Fiqri Dizar Khaidizar ◽  
Boon Chin Tan

Drought is one of the significant threats to the agricultural sector. However, there is limited knowledge on plant response to drought stress and post-drought recovery. Pandanus amaryllifolius, a moderate drought-tolerant plant, is well-known for its ability to survive in low-level soil moisture conditions. Understanding the molecular regulation of drought stress signaling in this plant could help guide the rational design of crop plants to counter this environmental challenge. This study aimed to determine the morpho-physiological, biochemical, and protein changes of P. amaryllifolius in response to drought stress and during recovery. Drought significantly reduced the leaf relative water content and chlorophyll content of P. amaryllifolius. In contrast, relative electrolyte leakage, proline and malondialdehyde contents, and the activities of antioxidant enzymes in the drought-treated and recovered samples were relatively higher than the well-watered sample. The protein changes between drought-stressed, well-watered, and recovered plants were evaluated using tandem mass tags (TMT)-based quantitative proteomics. Of the 1415 differentially abundant proteins, 74 were significantly altered. The majority of proteins differing between them were related to carbon metabolism, photosynthesis, stress response, and antioxidant activity. This is the first study that reports the protein changes in response to drought stress in Pandanus. The data generated provide an insight into the drought-responsive mechanisms in P. amaryllifolius.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 208
Author(s):  
Ahlam Elwekeel ◽  
Dalia El Amir ◽  
Enas I. A. Mohamed ◽  
Elham Amin ◽  
Marwa H. A. Hassan ◽  
...  

The current study accentuates the significance of performing the multiplex approach of LC-HRESIMS, biological activity, and docking studies in drug discovery, taking into consideration a review of the literature. In this regard, the investigation of antioxidant and cytotoxic activities of Trigonella stellata collected from the Egyptian desert revealed a significant antioxidant capacity using DPPH with IC50 = 656.9 µg/mL and a moderate cytotoxicity against HepG2, MCF7, and CACO2, with IC50 values of 53.3, 48.3, and 55.8 µg/mL, respectively. The evaluation of total phenolic and flavonoid contents resulted in 32.8 mg GAE/g calculated as gallic acid equivalent and 5.6 mg RE/g calculated as rutin equivalent, respectively. Chemical profiling of T. stellata extract, using LC-HRESIMS analysis, revealed the presence of 15 metabolites, among which eleven compounds were detected for the first time in this species. Interestingly, in vitro testing of the antidiabetic activity of the alcoholic extract noted an α-glucosidase enzyme inhibitory activity (IC50 = 559.4 µg/mL) better than that of the standard Acarbose (IC50 = 799.9 µg/mL), in addition to a moderate inhibition of the α-amylase enzyme (IC50 = 0.77 µg/mL) compared to Acarbose (IC50 = 0.21 µg/mL). α-Glucosidase inhibition was also virtualized by binding interactions through the molecular docking study, presenting a high binding activity of six flavonoid glycosides, as well as the diterpenoid compound graecumoside A and the alkaloid fenugreekine. Taken together, the conglomeration of LC-HRESIMS, antidiabetic activity, and molecular docking studies shed light on T. stellata as a promising antidiabetic herb.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 214
Author(s):  
Qinghui Han ◽  
Qingxiang Zhu ◽  
Yao Shen ◽  
Michael Lee ◽  
Thomas Lübberstedt ◽  
...  

Chilling injury poses a serious threat to seed emergence of spring-sowing maize in China, which has become one of the main climatic limiting factors affecting maize production in China. It is of great significance to mine the key genes controlling low-temperature tolerance during seed germination and study their functions for breeding new maize varieties with strong low-temperature tolerance during germination. In this study, 176 lines of the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, which comprised 6618 bin markers, were used for QTL analysis of low-temperature germination ability. The results showed significant differences in germination related traits under optimum-temperature condition (25 °C) and low-temperature condition (10 °C) between two parental lines. In total, 13 QTLs were detected on all chromosomes, except for chromosome 5, 7, 10. Among them, seven QTLs formed five QTL clusters on chromosomes 1, 2, 3, 4, and 9 under the low-temperature condition, which suggested that there may be some genes regulating multiple germination traits at the same time. A total of 39 candidate genes were extracted from five QTL clusters based on the maize GDB under the low-temperature condition. To further screen candidate genes controlling low-temperature germination, RNA-Seq, in which RNA was extracted from the germination seeds of B73 and Mo17 at 10 °C, was conducted, and three B73 upregulated genes and five Mo17 upregulated genes were found by combined analysis of RNA-Seq and QTL located genes. Additionally, the variations of Zm00001d027976 (GLABRA2), Zm00001d007311 (bHLH transcription factor), and Zm00001d053703 (bZIP transcription factor) were found by comparison of amino sequence between B73 and Mo17. This study will provide a theoretical basis for marker-assisted breeding and lay a foundation for further revealing molecular mechanism of low-temperature germination tolerance in maize.


Sign in / Sign up

Export Citation Format

Share Document