chromosomal localization
Recently Published Documents


TOTAL DOCUMENTS

1546
(FIVE YEARS 21)

H-INDEX

91
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Kangtai Sun ◽  
Hui Fang ◽  
Yu Chen ◽  
Zhimin Zhuang ◽  
Qi Chen ◽  
...  

Plant cytochrome P450 (P450) participates in a wide range of biosynthetic reactions and targets a variety of biological molecules. These reactions lead to various fatty acid conjugates, plant hormones, secondary metabolites, lignin, and various defensive compounds. In our previous research, transcriptome analysis was performed on the salt-tolerant upland cotton “Tongyan No. 1.” Many differentially expressed genes (DEGs) belong to the P450 family, and their domains occur widely in plants. In this current research, P450 genes were identified in Gossypium hirsutum with the aid of bioinformatics methods for investigating phylogenetic relations, gene structure, cis-elements, chromosomal localization, and collinearity within a genome. qRT-PCR was conducted to analyze P450 gene expression patterns under salt stress. The molecular weights of the 156 P450 genes were in the range of 5,949.6–245,576.3 Da, and the length of the encoded amino acids for all the identified P450 genes ranged from 51 to 2,144. P450 proteins are divided into four different subfamilies based on phylogenetic relationship, gene structure, and chromosomal localization of gene replication. The length of P450 genes in upland cotton differs greatly, ranging from 1,500 to 13,000 bp. The number of exons in the P450 family genes ranged from 1 to 9, while the number of introns ranged from 0 to 8, and there were similar trends within clusters. A total of 31 cis-acting elements were identified by analyzing 1,500 bp promoter sequences. Differences were found in cis-acting elements among genes. The consistency between qRT-PCR and previous transcriptome analysis of salt tolerance DEGs indicated that they were likely to be involved in the salt tolerance of cotton seedlings. Our results provide valuable information on the evolutionary relationships of genes and functional characteristics of the gene family, which is beneficial for further study of the cotton P450 gene family.


Author(s):  
P. V. Kuzmitskaya ◽  
K. S. Karaleva ◽  
O. Yu. Urbanovich

The Trihelix family of transcription factors plays an important role in the plant’s response to various abiotic stress types. In this work in apple Golden Delicious genome we identified apple gene MD13G1109800 as a member of Triheilx family in silico. Analysis of chromosomal localization showed that it is located on chromosome 13 and has four introns. The hypothetical protein encoded by it has a length of 365 amino acid residues, a molecular weight of 42097.23 Da, an isoelectric point pI = 6.21 and located in the nucleus. Analysis of the promoter region of the MD13G1109800 gene indicates that its product is a member of many signaling pathways triggered by both external and internal factors. The expression level of the MD13G1109800 gene increases under drought, low and high temperatures, as well as salinity in the MM-106 apple rootstock.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Cheng Cheng Ruan ◽  
Zhe Chen ◽  
Fu Chu Hu ◽  
Wei Fan ◽  
Xiang He Wang ◽  
...  

Abstract Background The B3 superfamily (B3s) represents a class of large plant-specific transcription factors, which play diverse roles in plant growth and development process including flowering induction. However, identification and functional surveys of B3 superfamily have not been reported in ethylene-induced pineapple flowering (Ananas comosus). Results 57 B3 genes containing B3 domain were identified and phylogenetically classified into five subfamilies. Chromosomal localization analysis revealed that 54 of 57 AcB3s were located on 21 Linkage Groups (LG). Collinearity analysis demonstrated that the segmental duplication was the main event in the evolution of B3 gene superfamily, and most of them were under purifying selection. The analysis of cis-element composition suggested that most of these genes may have function in response to abscisic acid, ethylene, MeJA, light, and abiotic stress. qRT-PCR analysis of 40 AcB3s containing ethylene responsive elements exhibited that the expression levels of 35 genes were up-regulated within 1 d after ethephon treatment and some were highly expressed in flower bud differentiation period in stem apex, such as Aco012003, Aco019552 and Aco014401. Conclusion This study provides a basic information of AcB3s and clues for involvement of some AcB3s in ethylene-induced flowering in pineapple.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247402
Author(s):  
Davide Noto ◽  
Antonina Giammanco ◽  
Rossella Spina ◽  
Francesca Fayer ◽  
Angelo B. Cefalù ◽  
...  

SREBP1 and 2, are cholesterol sensors able to modulate cholesterol-related gene expression responses. SREBPs binding sites are characterized by the presence of multiple target sequences as SRE, NFY and SP1, that can be arranged differently in different genes, so that it is not easy to identify the binding site on the basis of direct DNA sequence analysis. This paper presents a complete workflow based on a one-dimensional Convolutional Neural Network (CNN) model able to detect putative SREBPs binding sites irrespective of target elements arrangements. The strategy is based on the recognition of SRE linked (less than 250 bp) to NFY sequences according to chromosomal localization derived from TF Immunoprecipitation (TF ChIP) experiments. The CNN is trained with several 100 bp sequences containing both SRE and NF-Y. Once trained, the model is used to predict the presence of SRE-NFY in the first 500 bp of all the known gene promoters. Finally, genes are grouped according to biological process and the processes enriched in genes containing SRE-NFY in their promoters are analyzed in details. This workflow allowed to identify biological processes enriched in SRE containing genes not directly linked to cholesterol metabolism and possible novel DNA patterns able to fill in for missing classical SRE sequences.


2020 ◽  
pp. jbc.RA120.014328
Author(s):  
Hyewon Park ◽  
Haeyoung Kim ◽  
Victoria Hassebroek ◽  
Yoshiaki Azuma ◽  
Chad Slawson ◽  
...  

Ewing sarcoma is a pediatric bone cancer that expresses the chimeric protein EWSR1/FLI1. We previously demonstrated that EWSR1/FLI1 impairs the localization of Aurora B kinase to the midzone (the midline structure located between segregating chromosomes) during anaphase. While localization of Aurora B is essential for faithful cell division, it is unknown whether interference with midzone organization by EWSR1/FLI1 induces aneuploidy. To address this, we generated stable Tet-on inducible cell lines with EWSR1/FLI1, using CRISPR/Cas9 technology to integrate the transgene at the safe-harbor AAVS1 locus in DLD-1 cells. Induced cells expressing EWSR1/FLI1 displayed an increased incidence of aberrant localization of Aurora B, and greater levels of aneuploidy, compared to non-induced cells. Furthermore, the expression of EWSR1/FLI1-T79A, containing a threonine (Thr) to alanine (Ala) substitution at amino acid 79, failed to induce these phenotypes, indicating that Thr 79 is critical for EWSR1/FLI1 interference with mitosis. In contrast, the phosphomimetic mutant EWSR1/FLI1-T79D (Thr to aspartic acid (Asp)) retained the high activity as wildtype EWSR1/FLI1. Together, these findings suggest that phosphorylation of EWSR1/FLI1 at Thr 79 promotes the co-localization of EWSR1/FLI1 and Aurora B on the chromosomes during prophase and metaphase, and in addition, impairs the localization of Aurora B during anaphase, leading to induction of aneuploidy. This is the first demonstration of the mechanism for EWSR1/FLI1-dependent induction of aneuploidy associated with mitotic dysfunction, and the identification of the phosphorylation of the Thr 79 of EWSR1/FLI1 as a critical residue required for this induction.


2020 ◽  
Vol 240 ◽  
pp. 126529
Author(s):  
Monika Janczak ◽  
Karolina Hyz ◽  
Michal Bukowski ◽  
Robert Lyzen ◽  
Marcin Hydzik ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1199
Author(s):  
Bei Lu ◽  
Yuanhua Wang ◽  
Geng Zhang ◽  
Yingna Feng ◽  
Zhiming Yan ◽  
...  

A total of 54 FvbZIP genes were identified from the strawberry genome. These genes were found to be unevenly distributed on seven different chromosomes, and two of the genes had no matching chromosomal localization. FvbZIP genes were divided into 10 subfamilies according to protein sequence, and the structures of these genes were found to be highly conserved. Based on the bioinformatics analysis of FvbZIP genes, the expression of FabZIP genes changed during different stages of its growth and of its infection with gray mold disease. FabZIP46 was substantially upregulated, and its expression remained relatively high. FabZIP46 was cloned from cultivated strawberries by homologous cloning. The results of a transient transgenic assay revealed that the damage to the fruit tissue was markedly alleviated in strawberries overexpressing FabZIP46, with the incidence rate being substantially lower than that in the control group. By contrast, a brief silencing of FabZIP46 had the opposite effect. The results revealed that FabZIP46 played a positive role in the resistance of strawberries to Botrytis cinerea. The study findings provide valuable insights into the role of bZIP transcription factors as well as a theoretical reference for the regulation of resistance to gray mold disease in strawberry fruit.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 865
Author(s):  
Dan Su ◽  
Lei Chen ◽  
Jianying Sun ◽  
Luyue Zhang ◽  
Runfei Gao ◽  
...  

In recent years, the purple-fleshed sweet potato has attracted more attention because of its high nutritional value. The cytogenetics of this crop is relatively unexplored, limiting our knowledge on its genetic diversity. Therefore, we conducted cytogenetic analysis of 76 purple-fleshed sweet potato cultivars to analyze the chromosome structure and distribution of 45S and 5S rDNA. We noted that only 62 cultivars had 90 chromosomes, and the others were aneuploid with 88, 89, 91, or 92 chromosomes. The number of 45S rDNA in the 76 cultivars varied from 16 to 21; these sites showed different signal sizes and intensities and were localized at the chromosomal termini or satellite. The number of 5S rDNA was relatively stable; 74 cultivars showed six sites located at the chromosomal sub-terminal or near the centromere. Only the ‘Quanzishu 96’ and ‘Yuzixiang 10’ showed seven and five 5S rDNA sites, respectively. Additionally, both parent cultivars of ‘Quanzishu 96’ showed 18 45S and six 5S rDNA sites. Overall, our results indicate a moderate diversity in the distribution pattern of rDNAs. Our findings provide comprehensive cytogenetic information for the identification of sweet potato chromosomes, which can be useful for developing a high-quality germplasm resource.


Sign in / Sign up

Export Citation Format

Share Document