The mouse osteopetrotic grey-lethal mutation induces a defect in osteoclast maturation/function

Bone ◽  
2001 ◽  
Vol 28 (5) ◽  
pp. 513-523 ◽  
Author(s):  
V Rajapurohitam ◽  
N Chalhoub ◽  
N Benachenhou ◽  
L Neff ◽  
R Baron ◽  
...  
1927 ◽  
Vol 61 (677) ◽  
pp. 520-530 ◽  
Author(s):  
R. A. Brink
Keyword(s):  

1956 ◽  
Vol 54 (2) ◽  
pp. 219-235 ◽  
Author(s):  
Walter Landauer
Keyword(s):  

Genetics ◽  
1979 ◽  
Vol 92 (1) ◽  
pp. 151-160
Author(s):  
H Traut

ABSTRACT When females of Drosophila melanogaster are treated with chemical or physical mutagens, not only in one but also in both of the two homologous X chromosomes of a given oocyte, a recessive sex-linked lethal mutation may be induced. A method is described that discriminates between such "single" and "double mutations." A theory is developed to show how a comparison between the expected and the observed frequency of double mutations yields an indication of the intercellular distribution (random or nonrandom) of recessive lethal mutations induced by mutagenic agents in oocytes and, consequently, of the distribution (homogeneous or nonhomogeneous) of those agents.—Three agents were tested: FUdR (12.5, 50.0 and 81.0,μg/ml), mitomycin C (130.0 μg/ml) and X rays (2000 R, 150 kV). After FUdR feeding, no increase in the mutation frequency usually observed in D. melanogaster without mutagenic treatment was obtained (u=0.13%, namely three single mutations among 2332 chromosomes tested). After mitomycin C feeding, 104. single and three double mutations were obtained. All of the 50 mutations observed after X irradiation were single mutations. The results obtained in the mitomycin C and radiation experiments favor the assumption of a random intercellular distribution of recessive lethal mutations induced by these two agents in oocytes of D. melanogaster. Reasons are discussed why for other types of mutagenic agents nonrandom distributions may be observed with our technique.


1992 ◽  
Vol 267 (34) ◽  
pp. 24625-24633
Author(s):  
A.H. West ◽  
D.J. Clark ◽  
J Martin ◽  
W Neupert ◽  
F.U. Hartl ◽  
...  

Genetics ◽  
1982 ◽  
Vol 101 (3-4) ◽  
pp. 461-476
Author(s):  
Todd R Laverty ◽  
J K Lim

ABSTRACT In this study, we show that at least one lethal mutation at the 3F-4A region of the X chromosome can generate an array of chromosome rearrangements, all with one chromosome break in the 3F-4A region. The mutation at 3F-4A (secondary mutation) was detected in an X chromosome carrying a reverse mutation of an unstable lethal mutation, which was mapped in the 6F1-2 doublet (primary mutation). The primary lethal mutation at 6F1-2 had occurred in an unstable chromosome (Uc) described previously (Lim 1979). Prior to reversion, the 6F1-2 mutation had generated an array of chromosome rearrangements, all having one break in the 6F1-2 doublet (Lim 1979, 1980). In the X chromosomes carrying the 3F-4A secondary lethal mutation the 6F1-2 doublet was normal and stable, as was the 3F-4A region in the X chromosome carrying the primary lethal mutation. The disappearance of the instability having a set of genetic properties at one region (6F1-2) accompanied by its appearance elsewhere in the chromosome (3F-4A) implies that a transposition of the destabilizing element took place. The mutant at 3F-4A and other secondary mutants exhibited all but one (reinversion of an inversion to the normal sequence) of the eight properties of the primary lethal mutations. These observations support the view that a transposable destabilizing element is responsible for the hypermutability observed in the unstable chromosome and its derivaties.


1970 ◽  
Vol 61 (5) ◽  
pp. 219-220 ◽  
Author(s):  
KATHARINE P. HUMMEL
Keyword(s):  

2018 ◽  
Vol 93 (5) ◽  
Author(s):  
Oluwapelumi O. Adeyemi ◽  
Lee Sherry ◽  
Joseph C. Ward ◽  
Danielle M. Pierce ◽  
Morgan R. Herod ◽  
...  

ABSTRACTVirus capsid proteins must perform a number of roles. These include self-assembly and maintaining stability under challenging environmental conditions, while retaining the conformational flexibility necessary to uncoat and deliver the viral genome into a host cell. Fulfilling these roles could place conflicting constraints on the innate abilities encoded within the protein sequences. In a previous study, we identified a number of mutations within the capsid-coding sequence of poliovirus (PV) that were established in the population during selection for greater thermostability by sequential treatment at progressively higher temperatures. Two mutations in the VP1 protein acquired at an early stage were maintained throughout this selection procedure. One of these mutations prevented virion assembly when introduced into a wild-type (wt) infectious clone. Here we show, by sequencing beyond the capsid-coding region of the heat-selected virions, that two mutations had arisen within the coding region of the 2A protease. Both mutations were maintained throughout the selection process. Introduction of these mutations into a wt infectious clone by site-directed mutagenesis considerably reduced replication. However, they permitted a low level of assembly of infectious virions containing the otherwise lethal mutation in VP1. The 2Apromutations were further shown to slow the kinetics of viral polyprotein processing, and we suggest that this delay improves the correct folding of the mutant capsid precursor protein to permit virion assembly.IMPORTANCERNA viruses, including poliovirus, evolve rapidly due to the error-prone nature of the polymerase enzymes involved in genome replication. Fixation of advantageous mutations may require the acquisition of complementary mutations which can act in concert to achieve a favorable phenotype. This study highlights a compensatory role of a nonstructural regulatory protein, 2Apro, for an otherwise lethal mutation of the structural VP1 protein to facilitate increased thermal resistance. Studying how viruses respond to selection pressures is important for understanding mechanisms which underpin emergence of resistance and could be applied to the future development of antiviral agents and vaccines.


Sign in / Sign up

Export Citation Format

Share Document