infectious clone
Recently Published Documents


TOTAL DOCUMENTS

341
(FIVE YEARS 89)

H-INDEX

49
(FIVE YEARS 4)

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 107
Author(s):  
Leonora Szirovicza ◽  
Udo Hetzel ◽  
Anja Kipar ◽  
Jussi Hepojoki

Human hepatitis D virus (HDV) depends on hepatitis B virus co-infection and its glycoproteins for infectious particle formation. HDV was the sole known deltavirus for decades and believed to be a human-only pathogen. However, since 2018, several groups reported finding HDV-like agents from various hosts but without co-infecting hepadnaviruses. In vitro systems enabling helper virus-independent replication are key for studying the newly discovered deltaviruses. Others and we have successfully used constructs containing multimers of the deltavirus genome for the replication of various deltaviruses via transfection in cell culture. Here, we report the establishment of deltavirus infectious clones with 1.2× genome inserts bearing two copies of the genomic and antigenomic ribozymes. We used Swiss snake colony virus 1 as the model to compare the ability of the previously reported “2× genome” and the “1.2× genome” infectious clones to initiate replication in cell culture. Using immunofluorescence, qRT-PCR, immuno- and northern blotting, we found the 2× and 1.2× genome clones to similarly initiate deltavirus replication in vitro and both induced a persistent infection of snake cells. The 1.2× genome constructs enable easier introduction of modifications required for studying deltavirus replication and cellular interactions.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 36
Author(s):  
Zongdi Li ◽  
Chenyang Li ◽  
Shuai Fu ◽  
Yu Liu ◽  
Yi Xu ◽  
...  

Our previous research found that NSvc4, the movement protein of rice stripe virus (RSV), could localize to the actin filaments, endoplasmic reticulum, plasmodesmata, and chloroplast, but the roles of NSvc4 played in the chloroplast were opaque. Here, we confirm the accumulation of NSvc4 in the chloroplasts and the N-terminal 1–73 amino acids of NSvc4 are sufficient to localize to chloroplasts. We provide evidence to show that chloroplast-localized NSvc4 can impair the chloroplast-mediated immunity. Expressing NSvc4 in Nicotiana benthamiana leaves results in the decreased expression of defense-related genes NbPR1, NbPR2, and NbWRKY12 and the inhibition of chloroplast-derived ROS production. In addition, generation of an infectious clone of potato virus X (PVX) carrying NSvc4 facilitates PVX infection in N. benthamiana plants. Moreover, we identify two chloroplast-related host factors, named NbGAPDH-A and NbPsbQ1, both of which can interact with NSvc4. Knockdown of NbGAPDH-A or NbPsbQ1 can both promote RSV infection. Our results decipher a detailed function of NSvc4 in the chloroplast.


2021 ◽  
Vol 102 (12) ◽  
Author(s):  
Mingxiao Chen ◽  
Yi Xu ◽  
Ni Li ◽  
Ping Yin ◽  
Qing Zhou ◽  
...  

Hepatitis C virus (HCV) genotype 3 is widely distributed, and genotype 3-infected patients achieve a lower cure rate in direct-acting antiviral (DAA) therapy and are associated with a higher risk of hepatic steatosis than patients with other genotypes. Thus, the study of the virology and pathogenesis of genotype 3 HCV is increasingly relevant. Here, we developed a full-length infectious clone and a subgenomic replicon for the genotype 3a isolate, CH3a. From an infected serum, we constructed a full-length CH3a clone, however, it was nonviable in Huh7.5.1 cells. Next, we systematically adapted several intergenotypic recombinants containing Core-NS2 and 5′UTR-NS5A from CH3a, and other sequences from a replication-competent genotype 2 a clone JFH1. Adaptive mutations were identified, of which several combinations facilitated the replication of CH3a-JFH1 recombinants; however, they failed to adapt to the full-length CH3a and the recombinants containing CH3a NS5B. Thus, we attempted to separately adapt CH3a NS5B-3′UTR by constructing an intragenotypic recombinant using 5′UTR-NS5A from an infectious genotype 3a clone, DBN3acc, from which L3004P/M in NS5B and a deletion of 11 nucleotides (Δ11nt) downstream of the polyU/UC tract of the 3′UTR were identified and demonstrated to efficiently improve virus production. Finally, we combined functional 5′UTR-NS5A and NS5B-3′UTR sequences that carried the selected mutations to generate full-length CH3a with 26 or 27 substitutions (CH3acc), and both revealed efficient replication and virus spread in transfected and infected cells, releasing HCV of 104.2 f.f.u. ml−1. CH3acc was inhibited by DAAs targeting NS3/4A, NS5A and NS5B in a dose-dependent manner. The selected mutations permitted the development of subgenomic replicon CH3a-SGRep, by which L3004P, L3004M and Δ11nt were proven, together with a single-cycle virus production assay, to facilitate virus assembly, release, and RNA replication. CH3acc clones and CH3a-SGRep replicon provide new tools for the study of HCV genotype 3.


2021 ◽  
Vol 12 ◽  
Author(s):  
Menghuai Sun ◽  
Qian Lin ◽  
Chunyang Wang ◽  
Jiao Xing ◽  
Kunlong Yan ◽  
...  

Enterovirus A71 (EV-A71) is a major pathogen that causes the hand, foot, and mouth disease, which could be fatal with neurological complications in children. The underlying mechanism for the severe pathogenicity remains obscure, but impaired or aberrant innate immunity is considered to play a key role in viral pathogenesis. We reported previously that EV-A71 suppressed type I interferon (IFN) responses by inducing degradation of karyopherin-α1 (KPNA1), a component of the p-STAT1/2 complex. In this report, we showed that 2B, a non-structural protein of EV-A71, was critical to the suppression of the IFN-α-induced type I response in infected cells. Among viral proteins, 2B was the only one that was involved in the degradation of KPNA1, which impeded the formation of the p-STAT1/2/KPNA1 complex and blocked the translocation of p-STAT1/2 into the nucleus upon IFN-α stimulation. Degradation of KPNA1 induced by 2B can be inhibited in the cells pre-treated with Z-DEVD-FMK, a caspase-3 inhibitor, or siRNA targeting caspase-3, indicating that 2B-induced degradation of KPNA1 was caspase-3 dependent. The mechanism by which 2B functioned in the dysregulation of the IFN signaling was analyzed and a putative hydrophilic domain (H1) in the N-terminus of 2B was characterized to be critical for the release of cytochrome c into the cytosol for the activation of pro-caspase-3. We generated an EV-A71 infectious clone (rD1), which was deficient of the H1 domain. In rD1-infected cells, degradation of KPNA1 was relieved and the infected cells were more sensitive to IFN-α, leading to decreased viral replication, in comparison to the cells infected with the virus carrying a full length 2B. Our findings demonstrate that EV-A71 2B protein plays an important role in dysregulating JAK-STAT signaling through its involvement in promoting caspase-3 dependent degradation of KPNA1, which represents a novel strategy employed by EV-A71 to evade host antiviral innate immunity.


2021 ◽  
Vol 37 (6) ◽  
pp. 641-651
Author(s):  
Eui-Joon Kil ◽  
Hee-Seong Byun ◽  
Hyunsik Hwang ◽  
Kyeong-Yeoll Lee ◽  
Hong-Soo Choi ◽  
...  

Tomato yellow leaf curl virus (TYLCV) is one of the most important plant viruses belonging to the genus Begomovirus of the family Geminiviridae. To identify natural weed hosts that could act as reservoirs of TYLCV, 100 samples were collected at a TYLCV-affected tomato farm in Iksan from 2013 to 2014. The sample weeds were identified as belonging to 40 species from 18 families. TYLCV was detected in 57 samples belonging to 28 species through polymerase chain reaction using root samples including five species (Eleusine indica, Digitaria ciliaris, Echinochloa crus-galli, Panicum dichotomiflorum, and Setaria faberi) from the family Poaceae. Whitefly Bemisia tabaci-mediated TYLCV transmission from TYLCV-infected E. indica plants to healthy tomatoes was confirmed, and inoculated tomatoes showed typical symptoms, such as leaf curling and yellowing. In addition, TYLCV was detected in leaf and root samples of E. indica plants inoculated by both whitefly-mediated transmission using TYLCV-viruliferous whitefly and agro-inoculation using a TYLCV infectious clone. The majority of mastreviruses infect monocotyledonous plants, but there have also been reports of mastreviruses that can infect dicotyledonous plants, such as the chickpea chlorotic dwarf virus. No exception was reported among begomoviruses known as infecting dicots only. This is the first report of TYLCV as a member of the genus Begomovirus infecting monocotyledonous plants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Asako Takagi ◽  
Yutaka Amako ◽  
Daisuke Yamane ◽  
Bouchra Kitab ◽  
Yuko Tokunaga ◽  
...  

The 3′ untranslated region (UTR) of the hepatitis C virus (HCV) genome plays a significant role in replication including the poly(U) tract (You and Rice, 2008). Here we established an HCV clone that is infectious in vitro and in vivo, from an Egyptian patient with chronic HCV infection and hepatocellular carcinoma (HCC). First, we inoculated the patient plasma into a humanized chimeric mouse and passaged. We observed HCV genotype 4a propagation in the chimeric mouse sera at 1.7 × 107 copies/mL after 6 weeks. Next, we cloned the entire HCV sequence from the HCV-infected chimeric mouse sera using RT-PCR, and 5′ and 3′ RACE methodologies. We obtained first a shorter clone (HCV-G4 KM short, GenBank: AB795432.1), which contained 9,545 nucleotides with 341 nucleotides of the 5′UTR and 177 nucleotides of the 3′UTR, and this was frequently obtained for unknown reasons. We also obtained a longer clone by dividing the HCV genome into three fragments and the poly (U) sequences. We obtained a longer 3′UTR sequence than that of the HCV-G4 KM short clone, which contained 9,617 nucleotides. This longer clone possessed a 3′-UTR of 249 nucleotides (HCV-G4 KM long, GenBank: AB795432.2), because of a 71-nucleotide longer poly (U) stretch. The HCV-G4-KM long clone, but not the HCV-G4-KM short clone, could establish infection in human hepatoma HuH-7 cells. HCV RNAs carrying a nanoluciferase (NL) reporter were also constructed and higher replication activity was observed with G4-KM long-NL in vitro. Next, both short and long RNAs were intra-hepatically injected into humanized chimeric mice. Viral propagation was only observed for the chimeric mouse injected with the HCV-G4 KM long RNA in the sera after 21 days (1.64 × 106 copies/mL) and continued until 10 weeks post inoculation (wpi; 1.45–4.74 × 107 copies/mL). Moreover, sequencing of the HCV genome in mouse sera at 6 wpi revealed the sequence of the HCV-G4-KM long clone. Thus, the in vitro and in vivo results of this study indicate that the sequence of the HCV-G4-KM long RNA is that of an infectious clone.


2021 ◽  
Vol 3 ◽  
Author(s):  
Cory V. Keith ◽  
Roberto Ramos-Sobrinho ◽  
Jean-Philippe Marelli ◽  
Judith K. Brown

Cacao swollen shoot disease (CSSD) is a damaging disease of Theobroma cacao L. associated with infection by a group of poorly characterized badnaviral species. To establish causality and characterize the symptomatology associated with infection by the badnavirus cacao swollen shoot Ghana M virus (CSSGMV), an infectious clone (1.3-mer) was constructed and used to inoculated cacao “Amelonado” seedlings by biolistic inoculation (BI; n = 18) and agroinoculation (AI; n = 15). Newly expanded leaves of BI (10/18) and AI (12/15) plants developed foliar mosaic and curling symptoms 30-days post inoculation (dpi), with chlorotic mottling and necrotic crinkling being evident by 90 dpi. By 120 dpi, three of 15 AI plants exhibited characteristic stem-swelling. Viral infection was verified by PCR-amplification and sequencing of a 1068 bp fragment of the CSSGMV ORF3 from newly expanding leaves 60 dpi. The PCR results indicated that 14 of 18 and 15 of 15 BI and AI plants, respectively, were systemically infected. The complete CSSGMV genome sequence was determined, by Illumina sequencing, from representative AI and BI plants and shared >99.5% pairwise nucleotide identity with CSSGMV-Nig9 (GenBank Accession No. MH785299). Based on the development of characteristic CSSD symptoms and recovery of partial and complete genome sequences of CSSGMV-Nig9 from systemically infected cacao plants, Koch's postulates have been fulfilled.


2021 ◽  
Vol 8 (11) ◽  
pp. 272
Author(s):  
Wanting Yu ◽  
Yuao Sun ◽  
Qing He ◽  
Chaoying Sun ◽  
Tian Dong ◽  
...  

Porcine circovirus 2 (PCV2), considered one of the most globally important porcine pathogens, causes postweaning multisystemic wasting syndrome (PMWS). This virus is localized in the mitochondria in pigs with PMWS. Here, we identified, for the first time, a mitochondrial localization signal (MLS) in the PCV2 capsid protein (Cap) at the N-terminus. PK-15 cells showed colocalization of the MLS-EGFP fusion protein with mitochondria. Since the PCV2 Cap also contained a nuclear localization signal (NLS) that mediated entry into the nucleus, we inferred that the subcellular localization of the PCV2 Cap is inherently complex and dependent on the viral life cycle. Furthermore, we also determined that deletion of the MLS attenuated Cap-induced apoptosis. More importantly, the MLS was essential for PCV2 replication, as absence of the MLS resulted in failure of virus rescue from cells infected with infectious clone DNA. In conclusion, the MLS of the PCV2 Cap plays critical roles in Cap-induced apoptosis, and MLS deletion of Cap is lethal for virus rescue.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1258
Author(s):  
Chang-Gi Jeong ◽  
Amina Khatun ◽  
Salik Nazki ◽  
Seung-Chai Kim ◽  
Yun-Hee Noh ◽  
...  

Despite the routine use of porcine reproductive and respiratory syndrome (PRRS)-modified live vaccines, serious concerns are currently being raised due to their quick reversion to virulence and limited cross-protection against divergent PRRS virus (PRRSV) strains circulating in the field. Therefore, a PRRS chimeric vaccine (JB1) was produced using a DNA-launched infectious clone by replacing open reading frames (ORFs) 3–6 with those from a mixture of two genetically different PRRSV2 strains (K07–2273 and K08–1054) and ORF1a with that from a mutation-resistant PRRSV strain (RVRp22) exhibiting an attenuated phenotype. To evaluate the safety and cross-protective efficacy of JB1 in a reproductive model, eight PRRS-negative pregnant sows were purchased and divided into four groups. Four sows in two of the groups were vaccinated with JB1, and the other 4 sows were untreated at gestational day 60. At gestational day 93, one vaccinated group and one nonvaccinated group each were challenged with either K07–2273 or K08–1054. All of the sows aborted or delivered until gestation day 115 (24 days post challenge), and the newborn piglets were observed up to the 28th day after birth, which was the end of the experiment. Overall, pregnant sows of the JB1-vaccinated groups showed no meaningful viremia after vaccination and significant reductions in viremia with K07–2273 and K08–1054, exhibiting significantly higher levels of serum virus-neutralizing antibodies than non-vaccinated sows. Moreover, the JB1-vaccinated groups did not exhibit any abortion due to vaccination and showed improved piglet viability and birth weight. The piglets from JB1-vaccinated sows displayed lower viral concentrations in serum and fewer lung lesions compared with those of the piglets from the nonvaccinated sows. Therefore, JB1 is a safe and effective vaccine candidate that confers simultaneous protection against two genetically different PRRSV strains.


2021 ◽  
Vol 18 (3) ◽  
pp. 467-478
Author(s):  
Ashwini Talakayala ◽  
Veerapaneni Bindu Prathyusha ◽  
Dhanasekar Divya ◽  
Srinivas Ankanagari ◽  
Mallikarjuna Garladinne

Mungbean yellow mosaic virus (MYMV) causes massive crop losses in green gram. MYMV is a member of begomovirus with bipartite genome comprising DNA-A and DNA-B components, which is transmitted by whiteflies. Cloning and preparation of infectious clone is very much essential for screening germplasm or transgenic material of pulse crops since viruliferous whiteflies may not be available throughout the year. In the current work, we have amplified rolling circle mediated viral genome of MYMV using Φ29 DNA polymerase. The amplified products was digested and cloned into the plant expression vector pCAMBIA2301.The cloned constructs was then transformed into Agrobacterium LBA4404 through freeze thaw method. Further, three viral transmission techniques including mechanical rubbing, Agroinfiltration and Agroinoculation, were employed for assessing the mosaic symptoms in green gram. The molecular confirmation through polymerase chain reaction (PCR) indicated that the yellow mosaic symptoms were formed due to infectivity of MYMV in the green gram.


Sign in / Sign up

Export Citation Format

Share Document