Body Fluid Compartments, Inputs, and Outputs

2021 ◽  
pp. 17-30
1993 ◽  
pp. 23-26 ◽  
Author(s):  
Wm. Cameron Chumlea ◽  
Shumei S. Guo ◽  
Richard N. Baumgartner ◽  
Roger M. Siervogel

Nephron ◽  
1977 ◽  
Vol 18 (2) ◽  
pp. 93-100 ◽  
Author(s):  
Frans H.H. Leenen ◽  
Stephen J. Galla ◽  
Gysbert G. Geyskes ◽  
Victor Murdaugh jr. ◽  
Alvin P. Shapiro

1996 ◽  
Vol 81 (1) ◽  
pp. 105-116 ◽  
Author(s):  
C. S. Leach ◽  
C. P. Alfrey ◽  
W. N. Suki ◽  
J. I. Leonard ◽  
P. C. Rambaut ◽  
...  

The fluid and electrolyte regulation experiment with seven subjects was designed to describe body fluid, renal, and fluid regulatory hormone responses during the Spacelab Life Sciences-1 (9 days) and -2 (14 days) missions. Total body water did not change significantly. Plasma volume (PV; P < 0.05) and extracellular fluid volume (ECFV; P < 0.10) decreased 21 h after launch, remaining below preflight levels until after landing. Fluid intake decreased during weightlessness, and glomerular filtration rate (GFR) increased in the first 2 days and on day 8 (P < 0.05). Urinary antidiuretic hormone (ADH) excretion increased (P < 0.05) and fluid excretion decreased early in flight (P < 0.10). Plasma renin activity (PRA; P < 0.10) and aldosterone (P < 0.05) decreased in the first few hours after launch; PRA increased 1 wk later (P < 0.05). During flight, plasma atrial natriuretic peptide concentrations were consistently lower than preflight means, and urinary cortisol excretion was usually greater than preflight levels. Acceleration at launch and landing probably caused increases in ADH and cortisol excretion, and a shift of fluid from the extracellular to the intracellular compartment would account for reductions in ECFV. Increased permeability of capillary membranes may be the most important mechanism causing spaceflight-induced PV reduction, which is probably maintained by increased GFR and other mechanisms. If the Gauer-Henry reflex operates during spaceflight, it must be completed within the first 21 h of flight and be succeeded by establishment of a reduced PV set point.


2012 ◽  
Vol 9 (1) ◽  
pp. 67-78
Author(s):  
Lídia Palma ◽  
Ana Rita Alves ◽  
Liliana Tavares ◽  
Carla Monteiro ◽  
Luís Monteiro Rodrigues

1988 ◽  
Vol 65 (1) ◽  
pp. 318-324 ◽  
Author(s):  
H. Nose ◽  
G. W. Mack ◽  
X. R. Shi ◽  
E. R. Nadel

To investigate the influence of [Na+] in sweat on the distribution of body water during dehydration, we studied 10 volunteer subjects who exercised (40% of maximal aerobic power) in the heat [36 degrees C, less than 30% relative humidity (rh)] for 90-110 min to produce a dehydration of 2.3% body wt (delta TW). After dehydration, the subjects rested for 1 h in a thermoneutral environment (28 degrees C, less than 30% rh), after which time the changes in the body fluid compartments were assessed. We measured plasma volume, plasma osmolality, and [Na+], [K+], and [Cl-] in plasma, together with sweat and urine volumes and their ionic concentrations before and after dehydration. The change in the extracellular fluid space (delta ECF) was estimated from chloride distribution and the change in the intracellular fluid space (delta ICF) was calculated by subtracting delta ECF from delta TW. The decrease in the ICF space was correlated with the increase in plasma osmolality (r = -0.74, P less than 0.02). The increase in plasma osmolality was a function of the loss of free water (delta FW), estimated from the equation delta FW = delta TW - (loss of osmotically active substance in sweat and urine)/(control plasma osmolality) (r = -0.79, P less than 0.01). Free water loss, which is analogous to "free water clearance" in renal function, showed a strongly inverse correlation with [Na+] in sweat (r = -0.97, P less than 0.001). Fluid movement out of the ICF space attenuated the decrease in the ECF space.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document