Nonlinear Non-Gaussian Estimation

2017 ◽  
pp. 88-144
Author(s):  
Timothy D. Barfoot
2018 ◽  
Author(s):  
◽  
Tao Sun

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Nonlinear estimation and filtering have been intensively studied for decades since it has been widely used in engineering and science such as navigation, radar signal processing and target tracking systems. Because the posterior density function is not a Gaussian distribution, then the optimal solution is intractable. The nonlinear/non-Gaussian estimation problem is more challenging than the linear/Gaussian case, which has an optimal closed form solution, i.e. the celebrated Kalman filter. Many nonlinear filters including the extended Kalman filter, the unscented Kalman filter and the Gaussian-approximation filters, have been proposed to address nonlinear/non-Gaussian estimation problems in the past decades. Although the estimate yield by Gaussian-approximation filters such as cubature Kalman filters and Gaussian-Hermite quadrature filters is satisfied in many applications, there are two obvious drawbacks embedded in the use of Gaussian filters. On the one hand, with the increase of the quadrature points, much computational effort is devoted to approximate Gaussian integrals, which is not worthy sometimes. On the other hand, by the use of the update rule, the estimate constrains to be a linear function of the observation. In this dissertation, we aim to address this two shortcoming associated with the conventional nonlinear filters. We propose two nonlinear filters in the dissertation. Based on an adaptive strategy, the first one tries to reduce the computation cost during filtering without sacrificing much accuracy, because when the system is close to be linear, the lower level Gaussian quadrature filter is sufficient to provide accurate estimate. The adaptive strategy is used to evaluate the nonlinearity of the system at current time first and then utilize different quadrature rule for filtering. Another filter aims to modify the conventional update rule, i.e. the linear minimum mean square error (LMMSE) rule, to involve a nonlinear transformation of the observation, which is proven to be an efficient way to exploit more information from the original observation. According to the orthogonal property, we propose a novel approach to construct the nonlinear transformation systematically. The augmented nonlinear filter outperforms Gaussian filters and other conventional augmented filters in terms of the root mean square error and onsistency. Furthermore, we also extend the work to the more general case. The higher order moments can be utilized to construct the nonlinear transformation and in turn, the measurement space can be expand efficiently. Without the Gaussian assumption, the construction of the nonlinear transformation only demand the existence of a finite number of moments. Finally, the simulation results validate and demonstrate the superiority of the adaptive and augmented nonlinear filters.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Hui Li ◽  
Yun Liu ◽  
Chuanxu Wang ◽  
Shujun Zhang ◽  
Xuehong Cui

Pedestrian tracking is a critical problem in the field of computer vision. Particle filters have been proven to be very useful in pedestrian tracking for nonlinear and non-Gaussian estimation problems. However, pedestrian tracking in complex environment is still facing many problems due to changes of pedestrian postures and scale, moving background, mutual occlusion, and presence of pedestrian. To surmount these difficulties, this paper presents tracking algorithm of multiple pedestrians based on particle filters in video sequences. The algorithm acquires confidence value of the object and the background through extracting a priori knowledge thus to achieve multipedestrian detection; it adopts color and texture features into particle filter to get better observation results and then automatically adjusts weight value of each feature according to current tracking environment. During the process of tracking, the algorithm processes severe occlusion condition to prevent drift and loss phenomena caused by object occlusion and associates detection results with particle state to propose discriminated method for object disappearance and emergence thus to achieve robust tracking of multiple pedestrians. Experimental verification and analysis in video sequences demonstrate that proposed algorithm improves the tracking performance and has better tracking results.


2012 ◽  
Vol 10 (5) ◽  
pp. 1081-1086 ◽  
Author(s):  
Thanh Trung Duong ◽  
Kai Wei Chiang

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Hui Li ◽  
Shengwu Xiong ◽  
Pengfei Duan ◽  
Xiangzhen Kong

Video target tracking is a critical problem in the field of computer vision. Particle filters have been proven to be very useful in target tracking for nonlinear and non-Gaussian estimation problems. Although most existing algorithms are able to track targets well in controlled environments, it is often difficult to achieve automated and robust tracking of pedestrians in video sequences if there are various changes in target appearance or surrounding illumination. To surmount these difficulties, this paper presents multitarget tracking of pedestrians in video sequences based on particle filters. In order to improve the efficiency and accuracy of the detection, the algorithm firstly obtains target regions in training frames by combining the methods of background subtraction and Histogram of Oriented Gradient (HOG) and then establishes discriminative appearance model by generating patches and constructing codebooks using superpixel and Local Binary Pattern (LBP) features in those target regions. During the process of tracking, the algorithm uses the similarity between candidates and codebooks as observation likelihood function and processes severe occlusion condition to prevent drift and loss phenomenon caused by target occlusion. Experimental results demonstrate that our algorithm improves the tracking performance in complicated real scenarios.


2010 ◽  
Vol 121-122 ◽  
pp. 585-590 ◽  
Author(s):  
San Lung Zhao ◽  
Shen Zheng Wang ◽  
Hsi Jian Lee ◽  
Hung I Pai

The study presents a human tracking system. To tracking a person, we adopt a particle filter as tracking kernel, since the method has proven successful for tracking in non-linear and non-Gaussian estimation. In a particle filter, a set of weighted particles represents the possible target sates. In this study, we measure the weight according to both the appearances of the target object and background scene to improve the discriminability between them. In our tracker, the appearances are modeled as color histogram, since it is scale and rotation invariant. However, the color histogram extraction for a large number of overlap regions is repeated redundantly and inefficiently. To speed up it, we reduce the cost for calculating overlapped regions by creating a cumulative histogram map for the processing image. The experimental results show that the tracker has the best precision improvement, and the tracking speed is 49.7 fps for 384 × 288 resolution, when we use 600 particles. The results show that the proposed method can be applied to a real-time human tracking system with high precision.


Sign in / Sign up

Export Citation Format

Share Document