particle state
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 20)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Shuming Wen

Abstract The theoretical results of quantum mechanics (QM) have been verified by experiments, but the probabilistic Copenhagen interpretation is still controversial, and many counterintuitive phenomena are still difficult to understand. To trace the origin of probability in QM, we construct the state function of a multiparticle quantum objective system and find that the probability in QM originates from the particle number distribution rate in a unit volume near position r at time t in the multiparticle quantum objective system. Based on the origin of probability, We find that the state function of the particle has precise physical meaning; that is, the particle periodically and alternately exhibits the particle state and wave state in time and space, obtain the localized and nonlocalized spatiotemporal range of the particle, the apparent trajectory of the particle motion. Based on this, through rigorous mathematical derivation and analysis, we propose new physical interpretations of the quantum superposition state, wave-particle duality, the double-slit experiment, the Heisenberg uncertainty principle, and the quantum tunnelling effect, and these interpretations are physically logical and not counterintuitive.


2021 ◽  
Author(s):  
Shuming Wen

Abstract The theoretical results of quantum mechanics (QM) have been verified by experiments, but the probabilistic Copenhagen interpretation is still controversial, and many counterintuitive phenomena are still difficult to understand. To trace the origin of probability in QM, we construct the state function of a multiparticle quantum objective system and find that the probability in QM originates from the particle number distribution rate in a unit volume near position r at time t in the multiparticle quantum objective system. Based on the origin of probability, We find that the state function of the particle has precise physical meaning; that is, the particle periodically and alternately exhibits the particle state and wave state in time and space, obtain the localized and nonlocalized spatiotemporal range of the particle, the apparent trajectory of the particle motion. Based on this, through rigorous mathematical derivation and analysis, we propose new physical interpretations of the quantum superposition state, wave-particle duality, the double-slit experiment, the Heisenberg uncertainty principle, and the quantum tunnelling effect, and these interpretations are physically logical and not counterintuitive.


2021 ◽  
Vol 21 (17) ◽  
pp. 13269-13286
Author(s):  
Yongchun Liu ◽  
Zemin Feng ◽  
Feixue Zheng ◽  
Xiaolei Bao ◽  
Pengfei Liu ◽  
...  

Abstract. Although the anthropogenic emissions of SO2 have decreased significantly in China, the decrease in SO42- in PM2.5 is much smaller than that of SO2. This implies an enhanced formation rate of SO42- in the ambient air, and the mechanism is still under debate. This work investigated the formation mechanism of particulate sulfate based on statistical analysis of long-term observations in Shijiazhuang and Beijing supported with flow tube experiments. Our main finding was that the sulfur oxidation ratio (SOR) was exponentially correlated with ambient RH in Shijiazhuang (SOR = 0.15+0.0032×exp⁡(RH/16.2)) and Beijing (SOR = -0.045+0.12×exp⁡(RH/37.8)). In Shijiazhuang, the SOR is linearly correlated with the ratio of aerosol water content (AWC) in PM2.5 (SOR = 0.15+0.40×AWC/PM2.5). Our results suggest that uptake of SO2 instead of oxidation of S(IV) in the particle phase is the rate-determining step for sulfate formation. NH4NO3 plays an important role in the AWC and the change of particle state, which is a crucial factor determining the uptake kinetics of SO2 and the enhanced SOR during haze days. Our results show that NH3 significantly promoted the uptake of SO2 and subsequently the SOR, while NO2 had little influence on SO2 uptake and SOR in the presence of NH3.


2021 ◽  
pp. 2150151
Author(s):  
Comfort Sekga ◽  
Mhlambululi Mafu

In this paper, we propose a scheme where Alice shares an arbitrary m-particle unknown state with her agents, Bob and Charlie. Alice starts by distributing 2m Einstein–Podolsky–Rosen pairs with her agents and performs m joint three-particle Greenberger–Horne–Zeilinger state measurements on her particles. Bob, who acts as the controller, performs a product measurement [Formula: see text] on his m qubit states while Charlie retrieves the original state by performing unitary operations on his m particles. Subsequently, we demonstrate our proposed scheme’s feasibility by applying it in electronic voting by sharing an arbitrary single-particle state.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 736
Author(s):  
Janne Kotilahti ◽  
Pablo Burset ◽  
Michael Moskalets ◽  
Christian Flindt

The development of dynamic single-electron sources has made it possible to observe and manipulate the quantum properties of individual charge carriers in mesoscopic circuits. Here, we investigate multi-particle effects in an electronic Mach–Zehnder interferometer driven by a series of voltage pulses. To this end, we employ a Floquet scattering formalism to evaluate the interference current and the visibility in the outputs of the interferometer. An injected multi-particle state can be described by its first-order correlation function, which we decompose into a sum of elementary correlation functions that each represent a single particle. Each particle in the pulse contributes independently to the interference current, while the visibility (given by the maximal interference current) exhibits a Fraunhofer-like diffraction pattern caused by the multi-particle interference between different particles in the pulse. For a sequence of multi-particle pulses, the visibility resembles the diffraction pattern from a grid, with the role of the grid and the spacing between the slits being played by the pulses and the time delay between them. Our findings may be observed in future experiments by injecting multi-particle pulses into a Mach–Zehnder interferometer.


Author(s):  
Armen E. Allahverdyan ◽  
Karen V. Hovhannisyan ◽  
David Petrosyan

We propose a dynamical model for state symmetrization of two identical particles produced in spacelike-separated events by independent sources. We adopt the hypothesis that the pair of non-interacting particles can initially be described by a tensor product state since they are in principle distinguishable due to their spacelike separation. As the particles approach each other, a quantum jump takes place upon particle collision, which erases their distinguishability and projects the two-particle state onto an appropriately (anti-)symmetrized state. The probability density of the collision times can be estimated quasi-classically using the Wigner functions of the particles’ wavepackets, or derived from fully quantum mechanical considerations using an appropriately adapted time-of-arrival operator. Moreover, the state symmetrization can be formally regarded as a consequence of the spontaneous measurement of the collision time. We show that symmetric measurements performed on identical particles can in principle discriminate between the product and symmetrized states. Our model and its conclusions can be tested experimentally.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Victor A. S. V. Bittencourt ◽  
Alex E. Bernardini ◽  
Massimo Blasone

AbstractMassive Dirac particles are a superposition of left and right chiral components. Since chirality is not a conserved quantity, the free Dirac Hamiltonian evolution induces chiral quantum oscillations, a phenomenon related to the Zitterbewegung, the trembling motion of free propagating particles. While not observable for particles in relativistic dynamical regimes, chiral oscillations become relevant when the particle’s rest energy is comparable to its momentum. In this paper, we quantify the effect of chiral oscillations on the non-relativistic evolution of a particle state described as a Dirac bispinor and specialize our results to describe the interplay between chiral and flavor oscillations of non-relativistic neutrinos: we compute the time-averaged survival probability and observe an energy-dependent depletion of the quantity when compared to the standard oscillation formula. In the non-relativistic regime, this depletion due to chiral oscillations can be as large as 40$$\%$$ % . Finally, we discuss the relevance of chiral oscillations in upcoming experiments which will probe the cosmic neutrino background.


2021 ◽  
Author(s):  
Qin Zhou ◽  
Shuaishuai Li ◽  
Kai Zhang ◽  
Kun Qin ◽  
Minghao Lv ◽  
...  

Abstract Abrasive wear resulting from the microclastic rock is a common failure phenomenon in the drilling environmentthat often limits the sealing ability and the service life of seals. In this study, the friction and wear process of fluoro rubber (FKM) seals against 304 stainless steel (SS304) after one single entry of SiO2 abrasives were investigated. The influence of the changes in particle state on friction coefficient evolution, wear loss evolution, wear morphologies and wear mechanisms were discussed in detail. The results indicate that the presence of abrasive particles dispersed between the sealing interface clearly improves the friction performance of the seal pairs and deteriorates the wear performance of the metal counterpart. The movement and breakage of particles after one single entering into the sealing interface were obtained. And on this basis, the stable wear process can be divided into three stages. In addition, the main causes contributed to this change of wear mechanisms are the random movement and process of continuous breakdown of abrasive particles. Furthermore, the transition of the wear mechanism that clearly describes the wearing behavior of the seal pairs under these abrasive wear conditions was identified. The results of this study enhanced our understanding of the abrasive wear degradation of rubber seal in practical drilling applications.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 122 ◽  
Author(s):  
Dongyang Wang ◽  
Junjie Wu ◽  
Jiangfang Ding ◽  
Yingwen Liu ◽  
Anqi Huang ◽  
...  

According to the relevant theories on duality relation, the summation of the extractable information of a quanton’s wave and particle properties, which are characterized by interference visibility V and path distinguishability D, respectively, is limited. However, this relation is violated upon quantum superposition between the wave-state and particle-state of the quanton, which is caused by the quantum beamsplitter (QBS). Along another line, recent studies have considered quantum coherence C in the l1-norm measure as a candidate for the wave property. In this study, we propose an interferometer with a quantum which-path detector (QWPD) and examine the generalized duality relation based on C. We find that this relationship still holds under such a circumstance, but the interference between these two properties causes the full-particle property to be observed when the QWPD system is partially present. Using a pair of polarization-entangled photons, we experimentally verify our analysis in the two-path case. This study extends the duality relation between coherence and path information to the quantum case and reveals the effect of quantum superposition on the duality relation.


Sign in / Sign up

Export Citation Format

Share Document