scholarly journals MEAN-VARIANCE VERSUS MEAN–EXPECTED SHORTFALL MODELS: AN APPLICATION TO WHEAT VARIETY SELECTION

2016 ◽  
Vol 48 (2) ◽  
pp. 148-172 ◽  
Author(s):  
KUNLAPATH SUKCHAROEN ◽  
DAVID LEATHAM

AbstractOne of the most popular risk management strategies for wheat producers is varietal diversification. Previous studies proposed a mean-variance model as a tool to optimally select wheat varieties. However, this study suggests that the mean–expected shortfall (ES) model (which is based on a downside risk measure) may be a better tool because variance is not a correct risk measure when the distribution of wheat variety yields is multivariate nonnormal. Results based on data from Texas Blacklands confirm our conjecture that the mean-ES framework performs better in term of selecting wheat varieties than the mean-variance method.

2019 ◽  
Vol 36 (3) ◽  
pp. 440-463
Author(s):  
Deepak Jadhav ◽  
T.V. Ramanathan

Purpose An investor is expected to analyze the market risk while investing in equity stocks. This is because the investor has to choose a portfolio which maximizes the return with a minimum risk. The mean-variance approach by Markowitz (1952) is a dominant method of portfolio optimization, which uses variance as a risk measure. The purpose of this paper is to replace this risk measure with modified expected shortfall, defined by Jadhav et al. (2013). Design/methodology/approach Modified expected shortfall introduced by Jadhav et al. (2013) is found to be a coherent risk measure under univariate and multivariate elliptical distributions. This paper presents an approach of portfolio optimization based on mean-modified expected shortfall for the elliptical family of distributions. Findings It is proved that the modified expected shortfall of a portfolio can be represented in the form of expected return and standard deviation of the portfolio return and modified expected shortfall of standard elliptical distribution. The authors also establish that the optimum portfolio through mean-modified expected shortfall approach exists and is located within the efficient frontier of the mean-variance portfolio. The results have been empirically illustrated using returns from stocks listed in National Stock Exchange of India, Shanghai Stock Exchange of China, London Stock Exchange of the UK and New York Stock Exchange of the USA for the period February 2005-June 2018. The results are found to be consistent across all the four stock markets. Originality/value The mean-modified expected shortfall portfolio approach presented in this paper is new and is a natural extension of the Markowitz’s mean-variance and mean-expected shortfall portfolio optimization discussed by Deng et al. (2009).


2020 ◽  
Vol 20 (3) ◽  
pp. 859-868
Author(s):  
Jie Tian ◽  
Kun Zhao

The optimization of investment portfolio is the key to financial risk investment. In this study, the investment portfolio was optimized by removing the noise of covariance matrix in the mean-variance model. Firstly, the mean-variance model and noise in covariance matrix were briefly introduced. Then, the correlation matrix was denoised by KR method (Sharifi S, Grane M, Shamaie A) from random matrix theory (RMT). Then, an example was given to analyze the application of the method in financial stock investment portfolio. It was found that the stability of the matrix was improved and the minimum risk was reduced after denoising. The study of minimum risk under different M values and stock number suggested that calculating the optimal value of M and stock number based on RMT could achieve optimal financial risk investment portfolio result. It shows that RMT has a good effect on portfolio optimization and is worth promoting widely.


1995 ◽  
Vol 97 (1) ◽  
pp. 137 ◽  
Author(s):  
W. Jos Jansen

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Shuo Yang ◽  
Kai Yang ◽  
Ziyou Gao ◽  
Lixing Yang ◽  
Jungang Shi

Traditional models of timetable generation for last trains do not account for the fact that decision-maker (DM) often incorporates transfer demand variability within his/her decision-making process. This study aims to develop such a model with particular consideration of the decision-makers’ risk preferences in subway systems under uncertainty. First, we formulate an optimization model for last-train timetabling based on mean-variance (MV) theory that explicitly considers two significant factors including the number of successful transfer passengers and the running time of last trains. Then, we add the mean-variance risk measure into the model to generate timetables by adjusting the last trains’ departure times and running times for each line. Furthermore, we normalize two heterogeneous terms of the risk measure to provide assistance in getting reasonable results. Due to the complexity of MV model, we design a tabu search (TS) algorithm with specifically designed operators to solve the proposed timetabling problem. Through computational experiments involving the Beijing subway system, we demonstrate the computational efficiency of the proposed MV model and the heuristic approach.


Sign in / Sign up

Export Citation Format

Share Document