Long-Time Trajectorial Large Deviations and Importance Sampling for Affine Stochastic Volatility Models

2021 ◽  
Vol 53 (1) ◽  
pp. 220-250
Author(s):  
Zorana Grbac ◽  
David Krief ◽  
Peter Tankov

AbstractWe establish a pathwise large deviation principle for affine stochastic volatility models introduced by Keller-Ressel (2011), and present an application to variance reduction for Monte Carlo computation of prices of path-dependent options in these models, extending the method developed by Genin and Tankov (2020) for exponential Lévy models. To this end, we apply an exponentially affine change of measure and use Varadhan’s lemma, in the fashion of Guasoni and Robertson (2008) and Robertson (2010), to approximate the problem of finding the measure that minimizes the variance of the Monte Carlo estimator. We test the method on the Heston model with and without jumps to demonstrate its numerical efficiency.

2017 ◽  
Vol 20 (08) ◽  
pp. 1750055 ◽  
Author(s):  
ZHENYU CUI ◽  
J. LARS KIRKBY ◽  
GUANGHUA LIAN ◽  
DUY NGUYEN

This paper contributes a generic probabilistic method to derive explicit exact probability densities for stochastic volatility models. Our method is based on a novel application of the exponential measure change in [Z. Palmowski & T. Rolski (2002) A technique for exponential change of measure for Markov processes, Bernoulli 8(6), 767–785]. With this generic approach, we first derive explicit probability densities in terms of model parameters for several stochastic volatility models with nonzero correlations, namely the Heston 1993, [Formula: see text], and a special case of the [Formula: see text]-Hypergeometric stochastic volatility models recently proposed by [J. Da Fonseca & C. Martini (2016) The [Formula: see text]-Hypergeometric stochastic volatility model, Stochastic Processes and their Applications 126(5), 1472–1502]. Then, we combine our method with a stochastic time change technique to develop explicit formulae for prices of timer options in the Heston model, the [Formula: see text] model and a special case of the [Formula: see text]-Hypergeometric model.


2010 ◽  
Vol 13 (05) ◽  
pp. 767-787 ◽  
Author(s):  
EMILIO BARUCCI ◽  
MARIA ELVIRA MANCINO

We consider general stochastic volatility models driven by continuous Brownian semimartingales, we show that the volatility of the variance and the leverage component (covariance between the asset price and the variance) can be reconstructed pathwise by exploiting Fourier analysis from the observation of the asset price. Specifying parametrically the asset price model we show that the method allows us to compute the parameters of the model. We provide a Monte Carlo experiment to recover the volatility and correlation parameters of the Heston model.


Sign in / Sign up

Export Citation Format

Share Document