experimental simulation
Recently Published Documents


TOTAL DOCUMENTS

1319
(FIVE YEARS 358)

H-INDEX

47
(FIVE YEARS 7)

Author(s):  
Hamza Abubakar ◽  
Abdullahi Muhammad ◽  
Smaiala Bello

The Boolean Satisfiability Problem (BSAT) is one of the most important decision problems in mathematical logic and computational sciences for determining whether or not a solution to a Boolean formula.. Hopfield neural network (HNN) is one of the major type artificial neural network (NN) popularly known for it used in solving various optimization and decision problems based on its energy minimization machinism. The existing models that incorporate standalone network projected non-versatile framework as fundamental Hopfield type of neural network (HNN) employs random search in its training stages and sometimes get trapped at local optimal solution. In this study, Ants Colony Optimzation Algorithm (ACO) as a novel variant of probabilistic metaheuristic algorithm (MA) inspired by the behavior of real Ants, has been incorporated in the training phase of Hopfield types of the neural network (HNN) to accelerate the training process for Random Boolean kSatisfiability reverse analysis (RANkSATRA) based for logic mining. The proposed hybrid model has been evaluated according to robustness and accuracy of the induced logic obtained based on the agricultural soil fertility data set (ASFDS). Based on the experimental simulation results, it reveals that the ACO can effectively work with the Hopfield type of neural network (HNN) for Random 3 Satisfiability Reverse Analysis with 87.5 % classification accuracy


2022 ◽  
Vol 1049 ◽  
pp. 311-316
Author(s):  
Andrei Yu. Mokryak ◽  
Anna V. Mokryak ◽  
Soslan V. Skodtaev ◽  
Tatiana V. Safonova

An electrical installation that simulates an automobile DC power supply system with a voltage of 12 V has been created. An experimental simulation of a short circuit at currents up to 400 A on copper multi-wire and single-wire conductors under normal environmental conditions is carried out. The copper wires beads were annealed in a furnace at temperatures from 700 to 1000 °C for 20, 40 and 60 minutes. Metallographic analysis of copper wires beads was carried out. The temperatures and times that of at which the signs of short circuit and overcurrent are destroyed has been revealed. Obtained results contribute to improvement evidence’s researching in the fire investigation of motor vehicles electrical wiring after a fire. Keywords: Arc beads, Copper, Metallographic analysis, Electrical Short Circuit, Wires.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Zixin Lu

The emergence of wireless sensor networks connects the physical world with the information world and changes the way humans interact with nature. With the rapid development of modern information technology, accounting information systems (AIS) have emerged at the historic moment. Under the information environment, accounting data exists in paper or paperless form. The use of information technology not only brings convenient and efficient services to enterprises but also has a huge impact on the internal control of the enterprise. Because the network is open and unstable, the system is vulnerable to illegal intrusion and viruses. Based on the above background, the research content of this article is to use DES algorithm to encrypt accounting data. DES (Data Encryption Standard) encryption algorithm is a symmetric password encryption method. It has the advantages of fast encryption speed, simple and practical algorithm, and consideration of both security and efficiency requirements. This paper discusses the application of DES encryption technology to accounting data processing. To achieve data security management goals. Therefore, this paper proposes a DES algorithm based on the logistic chaotic system. Through experimental simulation, the results show that the chaotic discrete model has initial value sensitivity and iterative nonrepetition. The resulting key space is independent and random. In the application, you can perform random key input according to the performance of software and hardware, which is flexible; there is only one “1186828” in the initial DES algorithm encryption process, but each set of plain text in the improved DES algorithm corresponds to a corresponding set of keys and independence. The test results show that they are maintained between 5 and 6.6. It is proved that using the initial value sensitivity of the logistic system and using the initial value as the key can realize the secure management of accounting data on the premise of ensuring efficiency.


2022 ◽  
Author(s):  
Stefan Loehle ◽  
Arne Meindl ◽  
Erik Poloni ◽  
Joseph Steer ◽  
Tamara Sopek ◽  
...  

2022 ◽  
Vol 7 ◽  
pp. 7
Author(s):  
Karol Bot ◽  
Laura Aelenei ◽  
Maria da Glória Gomes ◽  
Carlos Santos Silva

The building façade has a crucial role in acting as the interface between the environment and the indoor ambient, and from an engineering and architecture perspective, in the last years, there has been a growing focus on the strategic development of building façades. In this sense, this work aims to present a literature review for the Building Integrated Solar Energy Systems (BI-SES) for façades, subdivided into three categories: thermal, photovoltaic and hybrid (both thermal and photovoltaic). The methodology used corresponds to a systematic review method. A sample of 75 works was reviewed (16 works on thermal BI-SES, 37 works on photovoltaic BI-SES, 22 works on hybrid BI-SES). This article summarises the works and later classifies them according to the type of study (numerical or experimental), simulation tool, parametric analysis and performance when applied.


Author(s):  
Ana Paula Maran ◽  
Maria Fernanda Fávero Menna Barreto ◽  
Denise Carpena Coitinho Dal Molin ◽  
João Ricardo Masuero

ABSTRACT Adequate cover thickness contributes to the correct performance of reinforced concrete structures. Spacers are recommended in standards to maintain a concrete cover; however, many regulations do not provide sufficient guidelines for their use, resulting in poor construction. A research program was developed for solid slabs through computational and experimental simulations to minimize errors in the cover by assessing different reinforcement bar diameters and spacer distribution, considering realistic element construction and standards, combining theory with practice. The results show that the use of spacers does not guarantee the design cover for some reinforcement bar diameters, as 4.2 and 5.0 mm, and regardless of the spacer distribution configuration assessed, these meshes undergo permanent deformation, thereby damaging the cover and consequently impact structural performance. Meshes of 6.3 and 8.0 mm diameters present deformation within the cover tolerance. Therefore, it is preferable to choose bigger diameters and larger mesh spacing to guarantee the projected cover, contributing to the correct performance of the structures, solving one of the major problems in this type of construction.


Author(s):  
Hongyan Wang ◽  
Min Huang ◽  
Hongfeng Wang ◽  
Xuehao Feng ◽  
Yanjie Zhou

Nowadays, tardiness has become a significant risk in the logistics industry. To address this problem, we introduce the tardiness risk index to quantify both the magnitude of the tardiness risk and the maximum probability of tardiness occurring. In this paper, we investigate the contract design problem with the tardiness risk index to mitigate the tardiness risk when a fourth-party logistics company (4PL) delegates the delivery task of a client to a third-party logistics company (3PL). Specifically, the contracts are designed in a decentralized system with information symmetry and information asymmetry when 3PL is risk neutral and risk averse. Furthermore, the incentive problems demonstrated that the 3PL is encouraged to make the optimal effort for delivery and the 4PL determines the optimal fixed payment and penalty coefficient. Through analyzing the experimental simulation results, we can find that the contract can effectively mitigate the tardiness risk and the maximum probability of risk occurrence.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 80
Author(s):  
Hongjun Wang ◽  
Chunchao Song ◽  
Youjun Yue ◽  
Hui Zhao

Aiming to solve the problem of voltage fluctuation of critical load caused by lack of control when an unplanned island occurs in a microgrid, a voltage stabilizing control strategy of critical load based on electric spring is proposed in this paper. When unplanned islanding occurs in a microgrid system, the system bus voltage fluctuates dramatically due to instantaneous power imbalance, compromising the power supply safety of important loads on the bus. In this paper, the electric spring control mode is integrated into the voltage stabilizing control strategy of critical loads in an unplanned island for the first time to realize the protection of critical loads. First of all, a model of an optical storage AC/DC hybrid microgrid is built, the overall system architecture is determined, and the microgrid is divided into four working states. Second, the working principle of electric spring is introduced, and a decoupling control strategy based on double closed loop is proposed. Finally, the experimental simulation of the proposed control strategy is experimentally simulated in Matlab/Simulink environment. The simulation findings show that when the bus voltage and current of microgrid change due to an unplanned island, the proposed control strategy based on electric spring may achieve the stability of voltage and current on critical loads.


Sign in / Sign up

Export Citation Format

Share Document