First-order adjoint method: nonlinear dynamics

2009 ◽  
pp. 401-421
Author(s):  
John M. Lewis ◽  
S. Lakshmivarahan ◽  
Sudarshan Dhall
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Chengjie Xu ◽  
Yanwei Wang ◽  
Hong Zhang ◽  
Xiaoqi Zhou

This paper investigates the adaptive consensus for networked mobile agents with heterogeneous nonlinear dynamics. Using tools from matrix, graph, and Lyapunov stability theories, sufficient consensus conditions are obtained under adaptive control protocols for both first-order and second-order cases. We design an adaptive strategy on the coupling strengths, which can guarantee that the consensus conditions do not require any global information except a connection assumption. The obtained results are also extended to networked mobile agents with identical nonlinear dynamics via adaptive pinning control. Finally, numerical simulations are presented to illustrate the theoretical findings.


Author(s):  
M. Bugra Akin ◽  
Wolfgang Sanz

Optimal shape design is widely used today to improve a variety of designs. It is a challenging task and several methods have been developed. These methods are generally classified by the order of derivatives used. They are zero, first and second order methods, which, as their names imply, use only the function values, first and second order derivatives, respectively. There are two common approaches to first order methods. These are the finite difference method and the adjoint method. The finite difference method requires an additional CFD calculation for each parameter, which quickly becomes computationally very expensive as the number of parameters rise. The adjoint method provides a computationally efficient alternative in such cases. But the computational cost of the adjoint method also becomes expensive if additional constraints are introduced or when multi-objective optimizations are considered. This paper presents a novel optimization strategy which can be classified as a quasi-gradient based optimization method. As with the finite differences method an additional CFD calculation is performed for each parameter. But in order to save computational time the simulations are not performed to full convergence so that the derivatives are not calculated accurately. The only information that can be obtained in this way is whether the chosen contour manipulation leads to an improvement. A line search method is introduced that can find an optimum using this incomplete gradient information. The optimization method is demonstrated by the quasi-3d optimization of a U-bend.


2015 ◽  
Vol 25 (02) ◽  
pp. 1550025 ◽  
Author(s):  
S. W. Yang ◽  
Y. X. Hao ◽  
W. Zhang ◽  
S. B. Li

Nonlinear dynamic behaviors of ceramic-metal graded truncated conical shell subjected to complex loads are investigated. The shell is modeled by first-order shear deformation theory. The nonlinear partial differential governing equation in terms of transverse displacements of the FGM truncated conical shell is derived from the Hamilton's principle. Galerkin's method is then utilized to discretize the partial governing equations to a two-degree-of-freedom nonlinear ordinary differential equation. The temperature-dependent materials properties of the constituents are graded in the radial direction in accordance with a power-law distribution. The aerodynamic pressure can be calculated by using the first-order piston theory. The temperature field is assumed to be a steady-state constant-temperature distribution. Bifurcation diagrams, the maximum Lyapunov exponents, wave forms and phase portraits are obtained by numerical simulation to demonstrate the complex nonlinear dynamics response of the FGM truncated conical shell. The influences of the semi-vertex angle, the material gradient index, in-plane and aerodynamic load on the nonlinear dynamics are studied.


Sign in / Sign up

Export Citation Format

Share Document