aerodynamic pressure
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 63)

H-INDEX

14
(FIVE YEARS 3)

CFD Letters ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 90-99
Author(s):  
Muhammad Fadhil ◽  
Aditya Prayoga ◽  
Andi Eriawan ◽  
Erwin Sulaeman ◽  
Ari Legowo

Due to relatively complex geometry of N219 winglets, CFD simulations have to be conducted to predict the aerodynamic load by the structure in some critical flight conditions. Since the aerodynamic CFD model is not the same as the finite element model of the structure, there is a need to accurately transform the load data between the two models. This paper discusses a simple alternative technique to map pressure distribution from the mesh or face zone of a CFD simulation to an FEM model using a Matlab based in-house code program. The technique focuses on how an FEM shell element has same pressure value with its nearest CFD element. Although the cumulative forces sometimes give different result, the pressure distribution is highly accurate, moreover when the FEM model has smoother elements. Validation has been conducted by comparing with other pressure mapping technique of a commercial software Patran. The results show a good agreement where the present technique provide a more accurate result especially for the critical biggest load among the cumulative forces in the three-dimensional direction. The proposed technique is currently suitable to evaluate loading characteristics of semi monocoque structures. A further treatment of the technique for other types of structure is currently under development.


Author(s):  
Alexandros Christos Chasoglou ◽  
Panagiotis Tsirikoglou ◽  
Anestis I Kalfas ◽  
Reza S Abhari

Abstract In the present study, an adaptive randomized Quasi Monte Carlo methodology is presented, combining Stein’s two-stage adaptive scheme and Low Discrepancy Sobol sequences. The method is used for the propagation and calculation of uncertainties related to aerodynamic pneumatic probes and high frequency fast response aerodynamic probes (FRAP). The proposed methodology allows the fast and accurate, in a probabilistic sense, calculation of uncertainties, ensuring that the total number of Monte Carlo (MC) trials is kept low based on the desired numerical accuracy. Thus, this method is well-suited for aerodynamic pressure probes, where multiple points are evaluated in their calibration space. Complete and detailed measurement models are presented for both a pneumatic probe and FRAP. The models are segregated in sub-problems allowing the evaluation and inspection of intermediate steps of MC in a transparent manner, also enabling the calculation of the relative contributions of the elemental uncertainties on the measured quantities. Various, commonly used sampling techniques for MC simulation and different adaptive MC schemes are compared, using both theoretical toy distributions and actual examples from aerodynamic probes' measurement models. The robustness of Stein's two-stage scheme is demonstrated even in cases when signiffcant deviation from normality is observed in the underlying distribution of the output of the MC. With regards to FRAP, two issues related to piezo-resistive sensors are addressed, namely temperature dependent pressure hysteresis and temporal sensor drift, and their uncertainties are accounted for in the measurement model. These effects are the most dominant factors, affecting all flow quantities' uncertainties, with signiffcance that varies mainly with Mach and operating temperature. This work highlights the need to construct accurate and detailed measurement models for aerodynamic probes, that otherwise will result in signiffcant underestimation (in most cases in excess of 50%) of the final uncertainties.


2021 ◽  
Author(s):  
J.F. Wang ◽  
S.Q Shi ◽  
Y.Z. Liu ◽  
J.P. Yang ◽  
Lik-ho Tam

Abstract Owing to the excellent mechanical properties, polymethyl methacrylate (PMMA)/carbon nanotube (CNT) composite has been increasingly adopted in the aerospace field, which is usually subjected to various temperature conditions and supersonic aerodynamic loads. Using a molecular dynamics (MD)-based multiscale simulation, the nonlinear forced vibration of PMMA/CNT composite plate is investigated under coupled temperature and aerodynamic loads conditions. The longitudinal, transverse, and shear moduli of PMMA/single-walled CNT (SWCNT) nanocomposite obtained from MD simulation at different temperature and pressure levels are substituted into the extended rule of mixtures to establish the constitutive equations of PMMA/CNT composite plate. Meanwhile, Poisson’s ratio and thermal expansion coefficient of nanocomposite are used in the constitutive equations. Based on the third-order shear deformation theory, von-Karman nonlinear strain-displacement relation, and Hamilton’s principle, the partial differential equation of composite plate is derived, which is reduced into a set of coupled ordinary differential equations by applying Galerkin method and is solved using the fourth-order Runge-Kutta method. The phase portraits and time histories of composite plate are obtained under the complex loads including transverse harmonic excitation and aerodynamic pressure, which are applied to analyze the dynamic characteristics of system. This study reveals the nonlinear dynamic characteristics of PMMA/CNT composite plate, which contributes to the prediction of long-term performance of composite materials in aerospace field.


2021 ◽  
Author(s):  
Xiaofeng Yang ◽  
Jian Chen ◽  
Si Chen ◽  
Bin Zhou ◽  
Yijun Shi ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1493
Author(s):  
Guangxia Zhu ◽  
Xin Liu ◽  
Lulu Liu ◽  
Shengli Li

The aerodynamic coefficients transiting test is a new method for measuring the structural aerodynamic coefficients using the wind generated by a moving vehicle. However, the effect and correction of natural wind on the transiting test has not been studied. Hence, in this study, the investigation of the aerodynamic force and pressure measurements on a special triangular prism model is simulated through the transiting test under different natural wind conditions for 30° and 90° angles of wind incidence. Force and pressure measurement results in the transiting test are used to describe and explain the effect of natural wind in the range of 0–3.0 m/s on the aerodynamic coefficients of the triangular prism qualitatively and quantitatively. The results show that the driving wind field of the vehicle, aerodynamic force coefficient, and aerodynamic pressure coefficient are significantly influenced by strong natural wind greater than 1.71 m/s, which must be considered and so it is recommended that the structure aerodynamic coefficients transiting test should be conducted under the condition that the natural wind is less than 1.71 m/s. In addition, the method of two-direction round-trip measurement is proposed to modify the effect of natural wind on transiting tests.


Author(s):  
Yuchen Ma ◽  
Jinfang Teng ◽  
Mingmin Zhu ◽  
Xiaoqing Qiang

The corner separation and the related secondary flow have great impact on the compressor performance, and non-axisymmetric endwall contouring is proved effective in improving compressor efficiency. The aim of the study is to improve the compressor performance by two local endwall contouring strategies at the design and off-design conditions. The endwall is parameterized and the Bezier curve is used to loft the endwall surface. The design of the contoured endwall is based on a multi-point optimization method to minimize the aerodynamic pressure loss. In order to identify the influence of the contoured endwall, a detailed flow analysis is conducted on four effective contoured endwall designs. The selected endwall geometries exhibit great control ability on the corner separation and significantly reduce the pressure loss at the two operating conditions. The directional concave near the leading edge can induce strong streamwise pressure gradient and accelerate the endwall flow, greatly reducing the cross-passage pressure gradient. The convex structures near the concave edge and at the outlet can block the cross-flow and prevent the interaction between the cross-flow and the suction corner flow. The benefit of the contoured endwall is mainly due to the re-distributed endwall static pressure and blocking of the cross-flow movement. In terms of the control effect, the shape of the concave also matters and better control effect is observed on the deep and wide concave. The flow will be guided by the concave, and the best suppression on corner separation is observed on the concave which follows the suction side. The results also indicate that the relief of the hub corner separation slightly increases the shroud pressure loss.


Author(s):  
Andrew Hayden ◽  
Alexandrina Untaroiu

Abstract Boundary layer ingestion (BLI) concepts have become a prominent topic in research and development due to their increase in fuel efficiency for aircraft. Virginia Tech has developed the StreamVane™, a secondary flow distortion generator, which can be used to efficiently test BLI and its aeromechanical effects on turbomachinery. To ensure the safety of this system, the complex vanes within StreamVanes must be further analyzed structurally and aerodynamically. In this paper, the induced strain of two common vane shapes at three different operating conditions is computationally determined. Along with these predictions, the aerodynamic damping of the vanes is calculated to predict flutter conditions at the same three operating points. To achieve this, steady CFD calculations are done to acquire the aerodynamic pressure loading on the vanes. Finite element analysis (FEA) is performed to obtain the strain and modal response of the StreamVane structure. The mode shapes and steady CFD are used to initialize an unsteady CFD analysis which acquires the aerodynamic damping results of the vanes. The testcase used for this evaluation was specifically designed to overstep the structural limits of a StreamVane, and the results provide an efficient computational method to observe flutter conditions of stationary systems.


2021 ◽  
Author(s):  
Wei Zhang ◽  
Yu Pan ◽  
Yuchen Gong ◽  
Haibo Dong ◽  
Jinxiang Xi

Abstract In this work, a local adaptive mesh refinement (AMR) embedded incompressible flow solver is developed for biomedical flows. This AMR technique is based on the block-structured mesh and adapted from an in-house numerical solver for the Navier-Stokes equations with immersed-boundary method embedded, which is suitable for flows with complex and moving boundaries in biomedical applications. Flow behavior of the human upper airway under various head-neck postures is evaluated using the developed AMR technique, where the head-neck posture is hypothesized to change the cross-sectional area of the airway, therefore the airflow and aerodynamic behavior. The anatomically accurate three-dimensional human upper airway model is reconstructed from human magnetic resonance images (MRI) with measurements from the literature. Analyses were performed on vortex dynamics and pressure fluctuations in the pharyngeal airway. It was found that the vortex formation and aerodynamic pressure were affected by the airway bending. The sniffing position or the head-neck junction extension posture tend to facilitate the airflow through the upper human airway.


2021 ◽  
Vol 150 (2) ◽  
pp. 1332-1345
Author(s):  
Mohsen Motie-Shirazi ◽  
Matías Zañartu ◽  
Sean D. Peterson ◽  
Byron D. Erath

Sign in / Sign up

Export Citation Format

Share Document