scholarly journals Local rigidity of group actions: past, present, future

Author(s):  
David Fisher
Keyword(s):  
2017 ◽  
Vol 30 (2) ◽  
pp. 207-233
Author(s):  
Masayuki Asaoka

2014 ◽  
Vol 218 (5) ◽  
pp. 777-783
Author(s):  
Darryl McCullough
Keyword(s):  

Author(s):  
Cristina Bertone ◽  
Francesca Cioffi

AbstractGiven a finite order ideal $${\mathcal {O}}$$ O in the polynomial ring $$K[x_1,\ldots , x_n]$$ K [ x 1 , … , x n ] over a field K, let $$\partial {\mathcal {O}}$$ ∂ O be the border of $${\mathcal {O}}$$ O and $${\mathcal {P}}_{\mathcal {O}}$$ P O the Pommaret basis of the ideal generated by the terms outside $${\mathcal {O}}$$ O . In the framework of reduction structures introduced by Ceria, Mora, Roggero in 2019, we investigate relations among $$\partial {\mathcal {O}}$$ ∂ O -marked sets (resp. bases) and $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked sets (resp. bases). We prove that a $$\partial {\mathcal {O}}$$ ∂ O -marked set B is a marked basis if and only if the $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked set P contained in B is a marked basis and generates the same ideal as B. Using a functorial description of these marked bases, as a byproduct we obtain that the affine schemes respectively parameterizing $$\partial {\mathcal {O}}$$ ∂ O -marked bases and $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked bases are isomorphic. We are able to describe this isomorphism as a projection that can be explicitly constructed without the use of Gröbner elimination techniques. In particular, we obtain a straightforward embedding of border schemes in affine spaces of lower dimension. Furthermore, we observe that Pommaret marked schemes give an open covering of Hilbert schemes parameterizing 0-dimensional schemes without any group actions. Several examples are given throughout the paper.


2015 ◽  
Vol 26 (08) ◽  
pp. 1550064
Author(s):  
Bachir Bekka

Let Γ be a discrete group and 𝒩 a finite factor, and assume that both have Kazhdan's Property (T). For p ∈ [1, +∞), p ≠ 2, let π : Γ →O(Lp(𝒩)) be a homomorphism to the group O(Lp(𝒩)) of linear bijective isometries of the Lp-space of 𝒩. There are two actions πl and πr of a finite index subgroup Γ+ of Γ by automorphisms of 𝒩 associated to π and given by πl(g)x = (π(g) 1)*π(g)(x) and πr(g)x = π(g)(x)(π(g) 1)* for g ∈ Γ+ and x ∈ 𝒩. Assume that πl and πr are ergodic. We prove that π is locally rigid, that is, the orbit of π under O(Lp(𝒩)) is open in Hom (Γ, O(Lp(𝒩))). As a corollary, we obtain that, if moreover Γ is an ICC group, then the embedding g ↦ Ad (λ(g)) is locally rigid in O(Lp(𝒩(Γ))), where 𝒩(Γ) is the von Neumann algebra generated by the left regular representation λ of Γ.


2019 ◽  
Vol 2019 (753) ◽  
pp. 23-56 ◽  
Author(s):  
Christian Miebach ◽  
Karl Oeljeklaus

AbstractWe systematically study Schottky group actions on homogeneous rational manifolds and find two new families besides those given by Nori’s well-known construction. This yields new examples of non-Kähler compact complex manifolds having free fundamental groups. We then investigate their analytic and geometric invariants such as the Kodaira and algebraic dimension, the Picard group and the deformation theory, thus extending results due to Lárusson and to Seade and Verjovsky. As a byproduct, we see that the Schottky construction allows to recover examples of equivariant compactifications of {{\rm{SL}}(2,\mathbb{C})/\Gamma} for Γ a discrete free loxodromic subgroup of {{\rm{SL}}(2,\mathbb{C})}, previously obtained by A. Guillot.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicholas J. Fowler ◽  
Adnan Sljoka ◽  
Mike P. Williamson

AbstractWe present a method that measures the accuracy of NMR protein structures. It compares random coil index [RCI] against local rigidity predicted by mathematical rigidity theory, calculated from NMR structures [FIRST], using a correlation score (which assesses secondary structure), and an RMSD score (which measures overall rigidity). We test its performance using: structures refined in explicit solvent, which are much better than unrefined structures; decoy structures generated for 89 NMR structures; and conventional predictors of accuracy such as number of restraints per residue, restraint violations, energy of structure, ensemble RMSD, Ramachandran distribution, and clashscore. Restraint violations and RMSD are poor measures of accuracy. Comparisons of NMR to crystal structures show that secondary structure is equally accurate, but crystal structures are typically too rigid in loops, whereas NMR structures are typically too floppy overall. We show that the method is a useful addition to existing measures of accuracy.


Sign in / Sign up

Export Citation Format

Share Document