scholarly journals Mesolithic Pyrotechnology: Practices and Perceptions in Early Holocene Coastal Norway

2021 ◽  
pp. 1-18
Author(s):  
Charlotte Brysting Damm

Substantial pyrotechnological structures and large quantities of charcoal are rarely found on Early Holocene sites in coastal Norway. Nevertheless, information on the use of fire and fuel types is available and presented in this article, a survey of sites dating from 10,000 to 8000 uncal bp. Possible fuel types and preferences are discussed and it is argued that most fires would have been small and short-lived, making extensive use of low vegetation. This suggests that food must have been largely consumed raw, fermented, or dried. The distinction between the use of shrubs and trees must have had implications for the perception of their properties, which appear to have persisted even after the emergence of more forested landscapes.

2016 ◽  
Author(s):  
Kevin Q. Nguyen ◽  
◽  
Elizabeth K. Thomas ◽  
Isla S. Castañeda ◽  
Jason P. Briner ◽  
...  

2018 ◽  
Author(s):  
Caitlin T. McManimon ◽  
◽  
William B. Ouimet ◽  
Yulio Araya ◽  
Benjamin Lee ◽  
...  

2020 ◽  
Vol 95 ◽  
pp. 84-96
Author(s):  
Gang Xu ◽  
Jian Liu ◽  
Marcello Gugliotta ◽  
Yoshiki Saito ◽  
Lilei Chen ◽  
...  

AbstractThis paper presents geochemical and grain-size records since the early Holocene in core ECS0702 with a fine chronology frame obtained from the Yangtze River subaqueous delta front. Since ~9500 cal yr BP, the proxy records of chemical weathering from the Yangtze River basin generally exhibit a Holocene optimum in the early Holocene, a weak East Asian summer monsoon (EASM) period during the middle Holocene, and a relatively strong EASM period in the late Holocene. The ~8.2 and ~4.4 cal ka BP cooling events are recorded in core ECS0702. The flooding events reconstructed by the grain-size parameters since the early Holocene suggest that the floods mainly occurred during strong EASM periods and the Yangtze River mouth sandbar caused by the floods mainly formed in the early and late Holocene. The Yangtze River-mouth sandbars since the early Holocene shifted from north to south, affected by tidal currents and the Coriolis force, and more importantly, controlled by the EASM. Our results are of great significance for enriching both the record of Holocene climate change in the Yangtze River basin and knowledge about the formation and evolution progress of the deltas located in monsoon regions.


Sign in / Sign up

Export Citation Format

Share Document