STIT tessellations are Bernoulli and standard

2012 ◽  
Vol 34 (3) ◽  
pp. 876-892 ◽  
Author(s):  
SERVET MARTÍNEZ

AbstractLet (Yt:t>0) be a STIT tessellation process and a>1. We prove that the random sequence (anYan:n∈ℤ) is a non-anticipating factor of a Bernoulli shift. We deduce that the continuous time process (atYat:t∈ℝ) is a Bernoulli flow. We use the techniques and results in Martínez and Nagel [Ergodic description of STIT tessellations. Stochastics 84(1) (2012), 113–134]. We also show that the filtration associated to the non-anticipating factor is standard in Vershik’s sense.

1991 ◽  
Vol 28 (3) ◽  
pp. 553-567 ◽  
Author(s):  
François Baccelli

We introduce multivariate partial orderings related with the Palm and time-stationary probabilities of a point process. Using these orderings, we give conditions for the monotonicity of a random sequence, with respect to some integral stochastic ordering, to be inherited with a continuous time process in which this sequence is imbedded. This type of inheritance is also discussed for the property of association.


1991 ◽  
Vol 28 (03) ◽  
pp. 553-567 ◽  
Author(s):  
François Baccelli

We introduce multivariate partial orderings related with the Palm and time-stationary probabilities of a point process. Using these orderings, we give conditions for the monotonicity of a random sequence, with respect to some integral stochastic ordering, to be inherited with a continuous time process in which this sequence is imbedded. This type of inheritance is also discussed for the property of association.


2021 ◽  
Vol 12 (05) ◽  
pp. 21-44
Author(s):  
Rachid Sabre

This paper concerns the continuous-time stable alpha symmetric processes which are inivitable in the modeling of certain signals with indefinitely increasing variance. Particularly the case where the spectral measurement is mixed: sum of a continuous measurement and a discrete measurement. Our goal is to estimate the spectral density of the continuous part by observing the signal in a discrete way. For that, we propose a method which consists in sampling the signal at periodic instants. We use Jackson's polynomial kernel to build a periodogram which we then smooth by two spectral windows taking into account the width of the interval where the spectral density is non-zero. Thus, we bypass the phenomenon of aliasing often encountered in the case of estimation from discrete observations of a continuous time process.


Sign in / Sign up

Export Citation Format

Share Document