scholarly journals Point transitivity, -transitivity and multi-minimality

2014 ◽  
Vol 35 (5) ◽  
pp. 1423-1442 ◽  
Author(s):  
ZHIJING CHEN ◽  
JIAN LI ◽  
JIE LÜ

Let $(X,f)$ be a topological dynamical system and ${\mathcal{F}}$ be a Furstenberg family (a collection of subsets of $\mathbb{N}$ with hereditary upward property). A point $x\in X$ is called an ${\mathcal{F}}$-transitive point if for every non-empty open subset $U$ of $X$ the entering time set of $x$ into $U$, $\{n\in \mathbb{N}:f^{n}(x)\in U\}$, is in ${\mathcal{F}}$; the system $(X,f)$ is called ${\mathcal{F}}$-point transitive if there exists some ${\mathcal{F}}$-transitive point. In this paper, we first discuss the connection between ${\mathcal{F}}$-point transitivity and ${\mathcal{F}}$-transitivity, and show that weakly mixing and strongly mixing systems can be characterized by ${\mathcal{F}}$-point transitivity, completing results in [Transitive points via Furstenberg family. Topology Appl. 158 (2011), 2221–2231]. We also show that multi-transitivity, ${\rm\Delta}$-transitivity and multi-minimality can be characterized by ${\mathcal{F}}$-point transitivity, answering two questions proposed by Kwietniak and Oprocha [On weak mixing, minimality and weak disjointness of all iterates. Ergod. Th. & Dynam. Sys. 32 (2012), 1661–1672].

2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Heng Liu ◽  
Li Liao ◽  
Lidong Wang

Consider the surjective continuous mapf:X→X, whereXis a compact metric space. In this paper we give several stronger versions of sensitivity, such as thick sensitivity, syndetic sensitivity, thickly syndetic sensitivity, and strong sensitivity. We establish the following. (1) If(X,f)is minimal and sensitive, then(X,f)is syndetically sensitive. (2) Weak mixing implies thick sensitivity. (3) If(X,f)is minimal and weakly mixing, then it is thickly syndetically sensitive. (4) If(X,f)is a nonminimalM-system, then it is thickly syndetically sensitive. Devaney chaos implies thickly periodic sensitivity. (5) We give a syndetically sensitive system which is not thickly sensitive. (6) We give thickly syndetically sensitive examples but not cofinitely sensitive ones.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jian Li ◽  
Yini Yang

<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M2">\begin{document}$ (X,T) $\end{document}</tex-math></inline-formula> be a topological dynamical system and <inline-formula><tex-math id="M3">\begin{document}$ n\geq 2 $\end{document}</tex-math></inline-formula>. We say that <inline-formula><tex-math id="M4">\begin{document}$ (X,T) $\end{document}</tex-math></inline-formula> is <inline-formula><tex-math id="M5">\begin{document}$ n $\end{document}</tex-math></inline-formula>-tuplewise IP-sensitive (resp. <inline-formula><tex-math id="M6">\begin{document}$ n $\end{document}</tex-math></inline-formula>-tuplewise thickly sensitive) if there exists a constant <inline-formula><tex-math id="M7">\begin{document}$ \delta&gt;0 $\end{document}</tex-math></inline-formula> with the property that for each non-empty open subset <inline-formula><tex-math id="M8">\begin{document}$ U $\end{document}</tex-math></inline-formula> of <inline-formula><tex-math id="M9">\begin{document}$ X $\end{document}</tex-math></inline-formula>, there exist <inline-formula><tex-math id="M10">\begin{document}$ x_1,x_2,\dotsc,x_n\in U $\end{document}</tex-math></inline-formula> such that</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \Bigl\{k\in \mathbb{N}\colon \min\limits_{1\le i&lt;j\le n}d(T^k x_i,T^k x_j)&gt;\delta\Bigr\} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>is an IP-set (resp. a thick set).</p><p style='text-indent:20px;'>We obtain several sufficient and necessary conditions of a dynamical system to be <inline-formula><tex-math id="M11">\begin{document}$ n $\end{document}</tex-math></inline-formula>-tuplewise IP-sensitive or <inline-formula><tex-math id="M12">\begin{document}$ n $\end{document}</tex-math></inline-formula>-tuplewise thickly sensitive and show that any non-trivial weakly mixing system is <inline-formula><tex-math id="M13">\begin{document}$ n $\end{document}</tex-math></inline-formula>-tuplewise IP-sensitive for all <inline-formula><tex-math id="M14">\begin{document}$ n\geq 2 $\end{document}</tex-math></inline-formula>, while it is <inline-formula><tex-math id="M15">\begin{document}$ n $\end{document}</tex-math></inline-formula>-tuplewise thickly sensitive if and only if it has at least <inline-formula><tex-math id="M16">\begin{document}$ n $\end{document}</tex-math></inline-formula> minimal points. We characterize two kinds of sensitivity by considering some kind of factor maps. We introduce the opposite side of pairwise IP-sensitivity and pairwise thick sensitivity, named (almost) pairwise IP<inline-formula><tex-math id="M17">\begin{document}$ ^* $\end{document}</tex-math></inline-formula>-equicontinuity and (almost) pairwise syndetic equicontinuity, and obtain dichotomies results for them. In particular, we show that a minimal system is distal if and only if it is pairwise IP<inline-formula><tex-math id="M18">\begin{document}$ ^* $\end{document}</tex-math></inline-formula>-equicontinuous. We show that every minimal system admits a maximal almost pairwise IP<inline-formula><tex-math id="M19">\begin{document}$ ^* $\end{document}</tex-math></inline-formula>-equicontinuous factor and admits a maximal pairwise syndetic equicontinuous factor, and characterize them by the factor maps to their maximal distal factors.</p>


2016 ◽  
Vol 37 (7) ◽  
pp. 2223-2254 ◽  
Author(s):  
JIE LI ◽  
PIOTR OPROCHA ◽  
XIANGDONG YE ◽  
RUIFENG ZHANG

In the paper we study relations of rigidity, equicontinuity and pointwise recurrence between an invertible topological dynamical system (t.d.s.) $(X,T)$ and the t.d.s. $(K(X),T_{K})$ induced on the hyperspace $K(X)$ of all compact subsets of $X$, and provide some characterizations. Among other examples, we construct a minimal, non-equicontinuous, distal and uniformly rigid t.d.s. and a weakly mixing t.d.s. which induces dense periodic points on the hyperspace $K(X)$ but itself does not have dense distal points, solving in that way a few open questions from earlier articles by Dong, and Li, Yan and Ye.


2019 ◽  
Vol 29 (09) ◽  
pp. 1950123 ◽  
Author(s):  
Mohammad Salman ◽  
Ruchi Das

For a commutative nonautonomous dynamical system we show that topological transitivity of the nonautonomous system induced on probability measures (hyperspaces) is equivalent to the weak mixing of the induced systems. Several counter examples are given for the results which are true in autonomous but need not be true in nonautonomous systems. Wherever possible sufficient conditions are obtained for the results to hold true. For a commutative periodic nonautonomous system on intervals, it is proved that weak mixing implies Devaney chaos. Given a periodic nonautonomous system, it is shown that sensitivity is equivalent to some stronger forms of sensitivity on a closed unit interval.


Author(s):  
FRANCESCO FIDALEO ◽  
FARRUKH MUKHAMEDOV

We show that some C*-dynamical systems obtained by free Fock quantization of classical ones, enjoy ergodic properties much stronger than their boson or fermion analogous. Namely, if the classical dynamical system (X, T, μ) is ergodic but not weakly mixing, then the resulting free quantized system (𝔊, α) is uniquely ergodic (w.r.t. the fixed point algebra) but not uniquely weak mixing. The same happens if we quantize a classical system (X, T, μ) which is weakly mixing but not mixing. In this case, the free quantized system is uniquely weak mixing but not uniquely mixing. Finally, a free quantized system arising from a classical mixing dynamical system, will be uniquely mixing. In such a way, it is possible to exhibit uniquely weak mixing and uniquely mixing C*-dynamical systems whose Gelfand–Naimark–Segal representation associated to the unique invariant state generates a von Neumann factor of one of the following types: I∞, II1, IIIλwhere λ ∈ (0, 1]. The resulting scenario is then quite different from the classical one. In fact, if a classical system is uniquely mixing, it is conjugate to the trivial one consisting of a singleton. For the sake of completeness, the results listed above are extended to the q-Commutation Relations, provided [Formula: see text]. The last result has a self-contained meaning as we prove that the involved C*-dynamical systems based on the q-Commutation Relations are conjugate to the corresponding one arising from the free case (i.e. q = 0), at least if [Formula: see text].


2011 ◽  
Vol 32 (5) ◽  
pp. 1661-1672 ◽  
Author(s):  
DOMINIK KWIETNIAK ◽  
PIOTR OPROCHA

AbstractThis article addresses some open questions about the relations between the topological weak mixing property and the transitivity of the map f×f2×⋯×fm, where f:X→X is a topological dynamical system on a compact metric space. The theorem stating that a weakly mixing and strongly transitive system is Δ-transitive is extended to a non-invertible case with a simple proof. Two examples are constructed, answering the questions posed by Moothathu [Diagonal points having dense orbit. Colloq. Math. 120(1) (2010), 127–138]. The first one is a multi-transitive non-weakly mixing system, and the second one is a weakly mixing non-multi-transitive system. The examples are special spacing shifts. The latter shows that the assumption of minimality in the multiple recurrence theorem cannot be replaced by weak mixing.


2017 ◽  
Vol 27 (10) ◽  
pp. 1750165 ◽  
Author(s):  
Xinxing Wu ◽  
Xianfeng Ding ◽  
Tianxiu Lu ◽  
Jianjun Wang

In this paper, some characterizations are obtained on the transitivity, mildly mixing property, a-transitivity, equicontinuity, uniform rigidity and proximality of Zadeh’s extensions restricted on some invariant closed subsets of all upper semi-continuous fuzzy sets in the level-wise metric. In particular, it is proved that a dynamical system is weakly mixing (resp., mildly mixing, weakly mixing and a-transitive, equicontinuous, uniformly rigid) if and only if the corresponding Zadeh’s extension is transitive (resp., mildly mixing, a-transitive, equicontinuous, uniformly rigid).


1999 ◽  
Vol 19 (2) ◽  
pp. 447-473 ◽  
Author(s):  
ANDRES DEL JUNCO ◽  
KARIN REINHOLD ◽  
BENJAMIN WEISS

We prove a collection of results inspired by Krengel's theorem on the existence of partitions with infinitely many independent iterates in any weakly mixing measure-preserving dynamical system. Our approach avoids Krengel's use of two-fold mixing thereby obtaining stronger results, including characterizations of mild and strong mixing, as well as weak mixing. We also obtain results for non-weakly mixing systems and for more general group actions.


2020 ◽  
pp. 1-13
Author(s):  
SEBASTIÁN PAVEZ-MOLINA

Abstract Let $(X,T)$ be a topological dynamical system. Given a continuous vector-valued function $F \in C(X, \mathbb {R}^{d})$ called a potential, we define its rotation set $R(F)$ as the set of integrals of F with respect to all T-invariant probability measures, which is a convex body of $\mathbb {R}^{d}$ . In this paper we study the geometry of rotation sets. We prove that if T is a non-uniquely ergodic topological dynamical system with a dense set of periodic measures, then the map $R(\cdot )$ is open with respect to the uniform topologies. As a consequence, we obtain that the rotation set of a generic potential is strictly convex and has $C^{1}$ boundary. Furthermore, we prove that the map $R(\cdot )$ is surjective, extending a result of Kucherenko and Wolf.


Sign in / Sign up

Export Citation Format

Share Document