On preimage entropy, folding entropy and stable entropy

2020 ◽  
pp. 1-33 ◽  
Author(s):  
WEISHENG WU ◽  
YUJUN ZHU

For non-invertible dynamical systems, we investigate how ‘non-invertible’ a system is and how the ‘non-invertibility’ contributes to the entropy from different viewpoints. For a continuous map on a compact metric space, we propose a notion of pointwise metric preimage entropy for invariant measures. For systems with uniform separation of preimages, we establish a variational principle between this version of pointwise metric preimage entropy and pointwise topological entropies introduced by Hurley [On topological entropy of maps. Ergod. Th. & Dynam. Sys.15 (1995), 557–568], which answers a question considered by Cheng and Newhouse [Pre-image entropy. Ergod. Th. & Dynam. Sys.25 (2005), 1091–1113]. Under the same condition, the notion coincides with folding entropy introduced by Ruelle [Positivity of entropy production in nonequilibrium statistical mechanics. J. Stat. Phys.85(1–2) (1996), 1–23]. For a $C^{1}$ -partially hyperbolic (non-invertible and non-degenerate) endomorphism on a closed manifold, we introduce notions of stable topological and metric entropies, and establish a variational principle relating them. For $C^{2}$ systems, the stable metric entropy is expressed in terms of folding entropy (namely, pointwise metric preimage entropy) and negative Lyapunov exponents. Preimage entropy could be regarded as a special type of stable entropy when each stable manifold consists of a single point. Moreover, we also consider the upper semi-continuity for both of pointwise metric preimage entropy and stable entropy and give a version of the Shannon–McMillan–Breiman theorem for them.

2020 ◽  
pp. 2150021
Author(s):  
Xinsheng Wang ◽  
Weisheng Wu ◽  
Yujun Zhu

Let [Formula: see text] be a [Formula: see text] random partially hyperbolic dynamical system. For the unstable foliation, the corresponding unstable metric entropy, unstable topological entropy and unstable pressure via the dynamics of [Formula: see text] on the unstable foliation are introduced and investigated. A version of Shannon–McMillan–Breiman Theorem for unstable metric entropy is given, and a variational principle for unstable pressure (and hence for unstable entropy) is obtained. Moreover, as an application of the variational principle, equilibrium states for the unstable pressure including Gibbs [Formula: see text]-states are investigated.


2017 ◽  
Vol 39 (2) ◽  
pp. 500-530
Author(s):  
WEISHENG WU

We generalize the notion of Schmidt games to the setting of the general Caratheódory construction. The winning sets for such generalized Schmidt games usually have large corresponding Caratheódory dimensions (e.g., Hausdorff dimension and topological entropy). As an application, we show that for every $C^{1+\unicode[STIX]{x1D703}}$-partially hyperbolic diffeomorphism $f:M\rightarrow M$ satisfying certain technical conditions, the topological entropy of the set of points with non-dense forward orbits is bounded below by the unstable metric entropy (in the sense of Ledrappier–Young) of certain invariant measures. This also gives a unified proof of the fact that the topological entropy of such a set is equal to the topological entropy of $f$, when $f$ is a toral automorphism or the time-one map of a certain non-quasiunipotent homogeneous flow.


2020 ◽  
pp. 1-27
Author(s):  
HUYI HU ◽  
WEISHENG WU ◽  
YUJUN ZHU

Abstract Unstable pressure and u-equilibrium states are introduced and investigated for a partially hyperbolic diffeomorphism f. We define the unstable pressure $P^{u}(f, \varphi )$ of f at a continuous function $\varphi $ via the dynamics of f on local unstable leaves. A variational principle for unstable pressure $P^{u}(f, \varphi )$ , which states that $P^{u}(f, \varphi )$ is the supremum of the sum of the unstable entropy and the integral of $\varphi $ taken over all invariant measures, is obtained. U-equilibrium states at which the supremum in the variational principle attains and their relation to Gibbs u-states are studied. Differentiability properties of unstable pressure, such as tangent functionals, Gateaux differentiability and Fréchet differentiability and their relations to u-equilibrium states, are also considered.


1996 ◽  
Vol 16 (4) ◽  
pp. 751-778 ◽  
Author(s):  
A. Katok ◽  
R. J. Spatzier

AbstractWe investigate invariant ergodic measures for certain partially hyperbolic and Anosov actions of ℝk, ℤkandWe show that they are either Haar measures or that every element of the action has zero metric entropy.


2015 ◽  
Vol 25 (09) ◽  
pp. 1550115 ◽  
Author(s):  
Jiandong Yin ◽  
Zuoling Zhou

Let X be a compact metric space and f : X → X be a continuous map. In this paper, ergodic chaos and strongly ergodic chaos are introduced, and it is proven that f is strongly ergodically chaotic if f is transitive but not minimal and has a full measure center. In addition, some sufficient conditions for f to be Ruelle–Takens chaotic are presented. For instance, we prove that f is Ruelle–Takens chaotic if f is transitive and there exists a countable base [Formula: see text] of X such that for each i > 0, the meeting time set N(Ui, Ui) for Ui with respect to itself has lower density larger than [Formula: see text].


2018 ◽  
Vol 166 (2) ◽  
pp. 381-413
Author(s):  
AI–HUA FAN ◽  
MING–TIAN LI ◽  
JI–HUA MA

AbstractWe are concerned with sets of generic points for shift-invariant measures in the countable symbolic space. We measure the sizes of the sets by the Billingsley-Hausdorff dimensions defined by Gibbs measures. It is shown that the dimension of such a set is given by a variational principle involving the convergence exponent of the Gibbs measure and the relative entropy dimension of the Gibbs measure with respect to the invariant measure. This variational principle is different from that of the case of finite symbols, where the convergent exponent is zero and is not involved. An application is given to a class of expanding interval dynamical systems.


2018 ◽  
Vol 28 (08) ◽  
pp. 1850102 ◽  
Author(s):  
Francisco Balibrea ◽  
Jaroslav Smítal ◽  
Marta Štefánková

We consider nonautonomous dynamical systems consisting of sequences of continuous surjective maps of a compact metric space [Formula: see text]. Let [Formula: see text], [Formula: see text] and [Formula: see text] denote the space of systems [Formula: see text], which are uniformly convergent, or equicontinuous, or pointwise convergent (to a continuous map), respectively. We show that for [Formula: see text], the generic system in any of the spaces has infinite topological entropy, while, if [Formula: see text] is the Cantor set, the generic system in any of the spaces has zero topological entropy. This shows, among others, that the general results of the above type for arbitrary compact space [Formula: see text] are difficult if not impossible.


2009 ◽  
Vol 29 (2) ◽  
pp. 357-369 ◽  
Author(s):  
DAVID BURGUET

AbstractDownarowicz [Entropy structure. J. Anal.96 (2005), 57–116] stated a variational principle for the tail entropy for invertible continuous dynamical systems of a compact metric space. We give here an elementary proof of this variational principle. Furthermore, we extend the result to the non-invertible case.


Sign in / Sign up

Export Citation Format

Share Document