scholarly journals SERRE WEIGHTS AND BREUIL’S LATTICE CONJECTURE IN DIMENSION THREE

2020 ◽  
Vol 8 ◽  
Author(s):  
DANIEL LE ◽  
BAO V. LE HUNG ◽  
BRANDON LEVIN ◽  
STEFANO MORRA

We prove in generic situations that the lattice in a tame type induced by the completed cohomology of a $U(3)$ -arithmetic manifold is purely local, that is, only depends on the Galois representation at places above $p$ . This is a generalization to $\text{GL}_{3}$ of the lattice conjecture of Breuil. In the process, we also prove the geometric Breuil–Mézard conjecture for (tamely) potentially crystalline deformation rings with Hodge–Tate weights $(2,1,0)$ as well as the Serre weight conjectures of Herzig [‘The weight in a Serre-type conjecture for tame $n$ -dimensional Galois representations’, Duke Math. J. 149(1) (2009), 37–116] over an unramified field extending the results of Le et al. [‘Potentially crystalline deformation 3985 rings and Serre weight conjectures: shapes and shadows’, Invent. Math. 212(1) (2018), 1–107]. We also prove results in modular representation theory about lattices in Deligne–Lusztig representations for the group $\text{GL}_{3}(\mathbb{F}_{q})$ .

1988 ◽  
Vol 104 (2) ◽  
pp. 207-213 ◽  
Author(s):  
Peter Symonds

If G is a group with a subgroup H and R is a Dedekind domain, then an H-projective RG-lattice is an RG-lattice that is a direct summand of an induced lattice for some RH-lattice N: they have been studied extensively in the context of modular representation theory. If H is the trivial group these are the projective lattices. We define a relative character χG/H on H-projective lattices, which in the case H = 1 is equivalent to the Hattori–Stallings trace for projective lattices (see [5, 8]), and in the case H = G is the ordinary character. These characters can be used to show that the R-ranks of certain H-projective lattices must be divisible by some specified number, generalizing some well-known results: cf. Corollary 3·6. If for example we take R = ℤ, then |G/H| divides the ℤ-rank of any H-projective ℤG-lattice.


1991 ◽  
Vol 43 (4) ◽  
pp. 792-813 ◽  
Author(s):  
G. O. Michler ◽  
J. B. Olsson

In his fundamental paper [1] J. L. Alperin introduced the idea of a weight in modular representation theory of finite groups G. Let p be a prime. A p-subgroup R is called a radical subgroup of G if R = Op(NG(R)). An irreducible character φ of NG(R) is called a weight character if φ is trivial on R and belongs to a p-block of defect zero of NG(R)/R. The G-conjugacy class of the pair (R, φ) is a weight of G. Let b be the p-block of NG(R) containing φ, and let B be p-block of G. A weight (R, φ) is a B-weight for the block B of G if B = bG, which means that B and b correspond under the Brauer homomorphism. Alperin's conjecture on weights asserts that the number l*(B) of B-weights of a p-block B of a finite group G equals the number l(B) of modular characters of B.


1954 ◽  
Vol 6 ◽  
pp. 486-497 ◽  
Author(s):  
G. de B. Robinson

The study of the modular representation theory of the symmetric group has been greatly facilitated lately by the introduction of the graph (9, III ), the q-graph (5) and the hook-graph (4) of a Young diagram [λ]. In the present paper we seek to coordinate these ideas and relate them to the r-inducing and restricting processes (9, II ).


1996 ◽  
Vol 120 (4) ◽  
pp. 589-595
Author(s):  
D. J. Benson

In the modular representation theory of finite groups, much recent effort has gone into describing cohomological properties of the category of finitely generated modules. In recent joint work of the author with Jon Carlson and Jeremy Rickard[3], it has become clear that for some purposes the finiteness restriction is undesirable. In particular, in the quotient category of kG-modules by the subcategory of modules of less than maximal complexity, it turns out that finitely generated modules can have infinitely generated summands, and that including these summands in the category repairs the lack of Krull–Schmidt property.


Sign in / Sign up

Export Citation Format

Share Document