On ArtinL-functions associated to Hilbert modular forms of weight one

1983 ◽  
Vol 74 (1) ◽  
pp. 1-42 ◽  
Author(s):  
J. D. Rogawski ◽  
J. B. Tunnell
2014 ◽  
Vol 2 ◽  
Author(s):  
PAYMAN L. KASSAEI ◽  
SHU SASAKI ◽  
YICHAO TIAN

AbstractWe extend the modularity lifting result of P. Kassaei (‘Modularity lifting in parallel weight one’,J. Amer. Math. Soc.26 (1) (2013), 199–225) to allow Galois representations with some ramification at $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}p$. We also prove modularity mod 5 of certain Galois representations. We use these results to prove new cases of the strong Artin conjecture over totally real fields in which 5 is unramified. As an ingredient of the proof, we provide a general result on the automatic analytic continuation of overconvergent $p$-adic Hilbert modular forms of finite slope which substantially generalizes a similar result in P. Kassaei (‘Modularity lifting in parallel weight one’, J. Amer. Math. Soc.26 (1) (2013), 199–225).


Author(s):  
Matteo Tamiozzo

AbstractThe aim of this paper is to prove inequalities towards instances of the Bloch–Kato conjecture for Hilbert modular forms of parallel weight two, when the order of vanishing of the L-function at the central point is zero or one. We achieve this implementing an inductive Euler system argument which relies on explicit reciprocity laws for cohomology classes constructed using congruences of automorphic forms and special points on several Shimura curves.


2015 ◽  
Vol 3 ◽  
Author(s):  
XIN WAN

Following the ideas and methods of a recent work of Skinner and Urban, we prove the one divisibility of the Iwasawa main conjecture for nearly ordinary Hilbert modular forms under certain local hypotheses. As a consequence, we prove that for a Hilbert modular form of parallel weight, trivial character, and good ordinary reduction at all primes dividing$p$, if the central critical$L$-value is zero then the$p$-adic Selmer group of it has rank at least one. We also prove that one of the local assumptions in the main result of Skinner and Urban can be removed by a base-change trick.


Sign in / Sign up

Export Citation Format

Share Document