scholarly journals CM liftings of surfaces over finite fields and their applications to the Tate conjecture

2021 ◽  
Vol 9 ◽  
Author(s):  
Kazuhiro Ito ◽  
Tetsushi Ito ◽  
Teruhisa Koshikawa

Abstract We give applications of integral canonical models of orthogonal Shimura varieties and the Kuga-Satake morphism to the arithmetic of $K3$ surfaces over finite fields. We prove that every $K3$ surface of finite height over a finite field admits a characteristic $0$ lifting whose generic fibre is a $K3$ surface with complex multiplication. Combined with the results of Mukai and Buskin, we prove the Tate conjecture for the square of a $K3$ surface over a finite field. To obtain these results, we construct an analogue of Kisin’s algebraic group for a $K3$ surface of finite height and construct characteristic $0$ liftings of the $K3$ surface preserving the action of tori in the algebraic group. We obtain these results for $K3$ surfaces over finite fields of any characteristics, including those of characteristic $2$ or $3$ .

2015 ◽  
Vol 152 (4) ◽  
pp. 769-824 ◽  
Author(s):  
Keerthi Madapusi Pera

We construct regular integral canonical models for Shimura varieties attached to Spin and orthogonal groups at (possibly ramified) primes$p>2$where the level is not divisible by$p$. We exhibit these models as schemes of ‘relative PEL type’ over integral canonical models of larger Spin Shimura varieties with good reduction at$p$. Work of Vasiu–Zink then shows that the classical Kuga–Satake construction extends over the integral models and that the integral models we construct are canonical in a very precise sense. Our results have applications to the Tate conjecture for K3 surfaces, as well as to Kudla’s program of relating intersection numbers of special cycles on orthogonal Shimura varieties to Fourier coefficients of modular forms.


2018 ◽  
Vol 2020 (13) ◽  
pp. 3902-3926
Author(s):  
Réda Boumasmoud ◽  
Ernest Hunter Brooks ◽  
Dimitar P Jetchev

Abstract We consider cycles on three-dimensional Shimura varieties attached to unitary groups, defined over extensions of a complex multiplication (CM) field $E$, which appear in the context of the conjectures of Gan et al. [6]. We establish a vertical distribution relation for these cycles over an anticyclotomic extension of $E$, complementing the horizontal distribution relation of [8], and use this to define a family of norm-compatible cycles over these fields, thus obtaining a universal norm construction similar to the Heegner $\Lambda $-module constructed from Heegner points.


2018 ◽  
Vol 6 ◽  
Author(s):  
WANSU KIM

We show that the integral canonical models of Hodge-type Shimura varieties at odd good reduction primes admits ‘$p$-adic uniformization’ by Rapoport–Zink spaces of Hodge type constructed in Kim [Forum Math. Sigma6(2018) e8, 110 MR 3812116].


2012 ◽  
Vol 55 (2) ◽  
pp. 418-423 ◽  
Author(s):  
Le Anh Vinh

AbstractGiven a positive integern, a finite fieldofqelements (qodd), and a non-degenerate symmetric bilinear formBon, we determine the largest possible cardinality of pairwiseB-orthogonal subsets, that is, for any two vectorsx,y∈ Ε, one hasB(x,y) = 0.


2003 ◽  
Vol 55 (2) ◽  
pp. 225-246 ◽  
Author(s):  
William D. Banks ◽  
Asma Harcharras ◽  
Igor E. Shparlinski

AbstractWe extend to the setting of polynomials over a finite field certain estimates for short Kloosterman sums originally due to Karatsuba. Our estimates are then used to establish some uniformity of distribution results in the ring [x]/M(x) for collections of polynomials either of the form f−1g−1 or of the form f−1g−1 + afg, where f and g are polynomials coprime to M and of very small degree relative to M, and a is an arbitrary polynomial. We also give estimates for short Kloosterman sums where the summation runs over products of two irreducible polynomials of small degree. It is likely that this result can be used to give an improvement of the Brun-Titchmarsh theorem for polynomials over finite fields.


2020 ◽  
Vol 31 (03) ◽  
pp. 411-419
Author(s):  
Masamichi Kuroda

Generalized almost perfect nonlinear (GAPN) functions were defined to satisfy some generalizations of basic properties of almost perfect nonlinear (APN) functions for even characteristic. In particular, on finite fields of even characteristic, GAPN functions coincide with APN functions. In this paper, we study monomial GAPN functions for odd characteristic. We give monomial GAPN functions whose algebraic degree are maximum or minimum on a finite field of odd characteristic. Moreover, we define a generalization of exceptional APN functions and give typical examples.


2014 ◽  
Vol 57 (4) ◽  
pp. 834-844
Author(s):  
Doowon Koh

AbstractWe study Lp → Lr restriction estimates for algebraic varieties V in the case when restriction operators act on radial functions in the finite field setting. We show that if the varieties V lie in odd dimensional vector spaces over finite fields, then the conjectured restriction estimates are possible for all radial test functions. In addition, assuming that the varieties V are defined in even dimensional spaces and have few intersection points with the sphere of zero radius, we also obtain the conjectured exponents for all radial test functions.


2016 ◽  
Vol 12 (06) ◽  
pp. 1519-1528
Author(s):  
Kwang Yon Kim ◽  
Ryul Kim ◽  
Jin Song Kim

In order to extend the results of [Formula: see text] in [P. Das, The number of permutation polynomials of a given degree over a finite field, Finite Fields Appl. 8(4) (2002) 478–490], where [Formula: see text] is a prime, to arbitrary finite fields [Formula: see text], we find a formula for the number of permutation polynomials of degree [Formula: see text] over a finite field [Formula: see text], which has [Formula: see text] elements, in terms of the permanent of a matrix. We write down an expression for the number of permutation polynomials of degree [Formula: see text] over a finite field [Formula: see text], using the permanent of a matrix whose entries are [Formula: see text]th roots of unity and using this we obtain a nontrivial bound for the number. Finally, we provide a formula for the number of permutation polynomials of degree [Formula: see text] less than [Formula: see text].


2017 ◽  
Vol 9 (3) ◽  
pp. 8
Author(s):  
Yasanthi Kottegoda

We consider homogeneous linear recurring sequences over a finite field $\mathbb{F}_{q}$, based on an irreducible characteristic polynomial of degree $n$ and order $m$. Let $t=(q^{n}-1)/ m$. We use quadratic forms over finite fields to give the exact number of occurrences of zeros of the sequence within its least period when $t$ has q-adic weight 2. Consequently we prove that the cardinality of the set of zeros for sequences from this category is equal to two.


2016 ◽  
Vol 19 (A) ◽  
pp. 12-28 ◽  
Author(s):  
Andreas-Stephan Elsenhans ◽  
Jörg Jahnel

We report on our project to find explicit examples of K3 surfaces having real or complex multiplication. Our strategy is to search through the arithmetic consequences of RM and CM. In order to do this, an efficient method is needed for point counting on surfaces defined over finite fields. For this, we describe algorithms that are$p$-adic in nature.


Sign in / Sign up

Export Citation Format

Share Document