scholarly journals The moduli space of Harnack curves in toric surfaces

2021 ◽  
Vol 9 ◽  
Author(s):  
Jorge Alberto Olarte

Abstract In 2006, Kenyon and Okounkov Kenyon and Okounkov [12] computed the moduli space of Harnack curves of degree d in ${\mathbb {C}\mathbb {P}}^2$ . We generalise their construction to any projective toric surface and show that the moduli space ${\mathcal {H}_\Delta }$ of Harnack curves with Newton polygon $\Delta $ is diffeomorphic to ${\mathbb {R}}^{m-3}\times {\mathbb {R}}_{\geq 0}^{n+g-m}$ , where $\Delta $ has m edges, g interior lattice points and n boundary lattice points. This solves a conjecture of Crétois and Lang. The main result uses abstract tropical curves to construct a compactification of this moduli space where additional points correspond to collections of curves that can be patchworked together to produce a curve in ${\mathcal {H}_\Delta }$ . This compactification has a natural stratification with the same poset as the secondary polytope of $\Delta $ .

2015 ◽  
Vol 152 (1) ◽  
pp. 115-151 ◽  
Author(s):  
Florian Block ◽  
Lothar Göttsche

The Severi degree is the degree of the Severi variety parametrizing plane curves of degree $d$ with ${\it\delta}$ nodes. Recently, Göttsche and Shende gave two refinements of Severi degrees, polynomials in a variable $y$, which are conjecturally equal, for large $d$. At $y=1$, one of the refinements, the relative Severi degree, specializes to the (non-relative) Severi degree. We give a tropical description of the refined Severi degrees, in terms of a refined tropical curve count for all toric surfaces. We also refine the equivalent count of floor diagrams for Hirzebruch and rational ruled surfaces. Our description implies that, for fixed ${\it\delta}$, the refined Severi degrees are polynomials in $d$ and $y$, for large $d$. As a consequence, we show that, for ${\it\delta}\leqslant 10$ and all $d\geqslant {\it\delta}/2+1$, both refinements of Göttsche and Shende agree and equal our refined counts of tropical curves and floor diagrams.


2011 ◽  
Vol 147 (4) ◽  
pp. 1230-1280 ◽  
Author(s):  
Lutz Hille ◽  
Markus Perling

AbstractIn this article we consider exceptional sequences of invertible sheaves on smooth complete rational surfaces. We show that to every such sequence one can associate a smooth complete toric surface in a canonical way. We use this structural result to prove various theorems on exceptional and strongly exceptional sequences of invertible sheaves on rational surfaces. We construct full strongly exceptional sequences for a large class of rational surfaces. For the case of toric surfaces we give a complete classification of full strongly exceptional sequences of invertible sheaves.


Author(s):  
Luca Schaffler

AbstractWe describe a compactification by stable pairs (also known as KSBA compactification) of the 4-dimensional family of Enriques surfaces which arise as the $${\mathbb {Z}}_2^2$$ Z 2 2 -covers of the blow up of $${\mathbb {P}}^2$$ P 2 at three general points branched along a configuration of three pairs of lines. Up to a finite group action, we show that this compactification is isomorphic to the toric variety associated to the secondary polytope of the unit cube. We relate the KSBA compactification considered to the Baily–Borel compactification of the same family of Enriques surfaces. Part of the KSBA boundary has a toroidal behavior, another part is isomorphic to the Baily–Borel compactification, and what remains is a mixture of these two. We relate the stable pair compactification studied here with Looijenga’s semitoric compactifications.


2016 ◽  
Vol 4 ◽  
Author(s):  
RENZO CAVALIERI ◽  
SIMON HAMPE ◽  
HANNAH MARKWIG ◽  
DHRUV RANGANATHAN

We study moduli spaces of rational weighted stable tropical curves, and their connections with Hassett spaces. Given a vector $w$ of weights, the moduli space of tropical $w$-stable curves can be given the structure of a balanced fan if and only if $w$ has only heavy and light entries. In this case, the tropical moduli space can be expressed as the Bergman fan of an explicit graphic matroid. The tropical moduli space can be realized as a geometric tropicalization, and as a Berkovich skeleton, its algebraic counterpart. This builds on previous work of Tevelev, Gibney and Maclagan, and Abramovich, Caporaso and Payne. Finally, we construct the moduli spaces of heavy/light weighted tropical curves as fibre products of unweighted spaces, and explore parallels with the algebraic world.


2020 ◽  
Vol 20 (4) ◽  
pp. 527-551
Author(s):  
Madeline Brandt ◽  
Paul Alexander Helminck

AbstractWe present an algorithm for computing the Berkovich skeleton of a superelliptic curve yn = f(x) over a valued field. After defining superelliptic weighted metric graphs, we show that each one is realizable by an algebraic superelliptic curve when n is prime. Lastly, we study the locus of superelliptic weighted metric graphs inside the moduli space of tropical curves of genus g.


2013 ◽  
Vol 65 (1) ◽  
pp. 120-148 ◽  
Author(s):  
Georges Francois ◽  
Simon Hampe

AbstractWe introduce the notion of families of n-marked, smooth, rational tropical curves over smooth tropical varieties and establish a one-to-one correspondence between (equivalence classes of) these families and morphisms from smooth tropical varieties into the moduli space of n-marked, abstract, rational, tropical curves Mn.


Author(s):  
RENZO CAVALIERI ◽  
PAUL JOHNSON ◽  
HANNAH MARKWIG ◽  
DHRUV RANGANATHAN

We study the stationary descendant Gromov–Witten theory of toric surfaces by combining and extending a range of techniques – tropical curves, floor diagrams and Fock spaces. A correspondence theorem is established between tropical curves and descendant invariants on toric surfaces using maximal toric degenerations. An intermediate degeneration is then shown to give rise to floor diagrams, giving a geometric interpretation of this well-known bookkeeping tool in tropical geometry. In the process, we extend floor diagram techniques to include descendants in arbitrary genus. These floor diagrams are then used to connect tropical curve counting to the algebra of operators on the bosonic Fock space, and are showno coincide with the Feynman diagrams of appropriate operators. This extends work of a number of researchers, including Block–Göttsche, Cooper–Pandharipande and Block–Gathmann–Markwig.


Sign in / Sign up

Export Citation Format

Share Document