scholarly journals Counting curves on Hirzebruch surfaces: tropical geometry and the Fock space

Author(s):  
RENZO CAVALIERI ◽  
PAUL JOHNSON ◽  
HANNAH MARKWIG ◽  
DHRUV RANGANATHAN

We study the stationary descendant Gromov–Witten theory of toric surfaces by combining and extending a range of techniques – tropical curves, floor diagrams and Fock spaces. A correspondence theorem is established between tropical curves and descendant invariants on toric surfaces using maximal toric degenerations. An intermediate degeneration is then shown to give rise to floor diagrams, giving a geometric interpretation of this well-known bookkeeping tool in tropical geometry. In the process, we extend floor diagram techniques to include descendants in arbitrary genus. These floor diagrams are then used to connect tropical curve counting to the algebra of operators on the bosonic Fock space, and are showno coincide with the Feynman diagrams of appropriate operators. This extends work of a number of researchers, including Block–Göttsche, Cooper–Pandharipande and Block–Gathmann–Markwig.

2015 ◽  
Vol 152 (1) ◽  
pp. 115-151 ◽  
Author(s):  
Florian Block ◽  
Lothar Göttsche

The Severi degree is the degree of the Severi variety parametrizing plane curves of degree $d$ with ${\it\delta}$ nodes. Recently, Göttsche and Shende gave two refinements of Severi degrees, polynomials in a variable $y$, which are conjecturally equal, for large $d$. At $y=1$, one of the refinements, the relative Severi degree, specializes to the (non-relative) Severi degree. We give a tropical description of the refined Severi degrees, in terms of a refined tropical curve count for all toric surfaces. We also refine the equivalent count of floor diagrams for Hirzebruch and rational ruled surfaces. Our description implies that, for fixed ${\it\delta}$, the refined Severi degrees are polynomials in $d$ and $y$, for large $d$. As a consequence, we show that, for ${\it\delta}\leqslant 10$ and all $d\geqslant {\it\delta}/2+1$, both refinements of Göttsche and Shende agree and equal our refined counts of tropical curves and floor diagrams.


2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Pierrick Bousseau

AbstractWe show that, after the change of variables $$q=e^{iu}$$ q = e iu , refined floor diagrams for $${\mathbb {P}}^2$$ P 2 and Hirzebruch surfaces compute generating series of higher genus relative Gromov–Witten invariants with insertion of a lambda class. The proof uses an inductive application of the degeneration formula in relative Gromov–Witten theory and an explicit result in relative Gromov–Witten theory of $${\mathbb {P}}^1$$ P 1 . Combining this result with the similar looking refined tropical correspondence theorem for log Gromov–Witten invariants, we obtain a non-trivial relation between relative and log Gromov–Witten invariants for $${\mathbb {P}}^2$$ P 2 and Hirzebruch surfaces. We also prove that the Block–Göttsche invariants of $${\mathbb {F}}_0$$ F 0 and $${\mathbb {F}}_2$$ F 2 are related by the Abramovich–Bertram formula.


Author(s):  
Christoph Goldner

AbstractThis is a follow-up paper of Goldner (Math Z 297(1–2):133–174, 2021), where rational curves in surfaces that satisfy general positioned point and cross-ratio conditions were enumerated. A suitable correspondence theorem provided in Tyomkin (Adv Math 305:1356–1383, 2017) allowed us to use tropical geometry, and, in particular, a degeneration technique called floor diagrams. This correspondence theorem also holds in higher dimension. In the current paper, we introduce so-called cross-ratio floor diagrams and show that they allow us to determine the number of rational space curves that satisfy general positioned point and cross-ratio conditions. The multiplicities of such cross-ratio floor diagrams can be calculated by enumerating certain rational tropical curves in the plane.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Federico Ardila ◽  
Florian Block

International audience The Severi variety parametrizes plane curves of degree $d$ with $\delta$ nodes. Its degree is called the Severi degree. For large enough $d$, the Severi degrees coincide with the Gromov-Witten invariants of $\mathbb{CP}^2$. Fomin and Mikhalkin (2009) proved the 1995 conjecture that for fixed $\delta$, Severi degrees are eventually polynomial in $d$. In this paper, we study the Severi varieties corresponding to a large family of toric surfaces. We prove the analogous result that the Severi degrees are eventually polynomial as a function of the multidegree. More surprisingly, we show that the Severi degrees are also eventually polynomial "as a function of the surface". Our strategy is to use tropical geometry to express Severi degrees in terms of Brugallé and Mikhalkin's floor diagrams, and study those combinatorial objects in detail. An important ingredient in the proof is the polynomiality of the discrete volume of a variable facet-unimodular polytope. La variété de Severi paramétrise les courbes planes de degré $d$ avec $\delta$ nœuds. Son degré s'appelle le degré de Severi. Pour $d$ assez grand, les degrés de Severi coïncident avec les invariants de Gromov-Witten de $\mathbb{CP}^2$. Fomin et Mikhalkin (2009) ont prouvé une conjecture de 1995 que pour $\delta$ fixé, les degrés de Severi sont à terme des polynômes en $d$. Nous étudions les variétés de Severi correspondant à une large famille de surfaces toriques. Nous prouvons le résultat analogue que les degrés de Severi sont à terme des fonctions polynomiales du multidegré. De manière plus surprenante, nous montrons que les degrés de Severi sont à terme des polynômes en tant que "fonction de la surface''. Notre stratégie est d'utiliser la géométrie tropicale pour exprimer les degrés de Severi en fonction des "floor diagrams" de Brugallé et Mikhalkin, et d'utiliser ces objets combinatoires en détail. Un autre ingrédient important de la preuve est la polynomialité du volume discret d'un polytope face-unimodulaire variable.


Author(s):  
Laura Escobar ◽  
Megumi Harada

Abstract Tropical geometry and the theory of Newton–Okounkov bodies are two methods that produce toric degenerations of an irreducible complex projective variety. Kaveh and Manon showed that the two are related. We give geometric maps between the Newton–Okounkov bodies corresponding to two adjacent maximal-dimensional prime cones in the tropicalization of $X$. Under a technical condition, we produce a natural “algebraic wall-crossing” map on the underlying value semigroups (of the corresponding valuations). In the case of the tropical Grassmannian $Gr(2,m)$, we prove that the algebraic wall-crossing map is the restriction of a geometric map. In an appendix by Nathan Ilten, he explains how the geometric wall-crossing phenomenon can also be derived from the perspective of complexity-one $T$-varieties; Ilten also explains the connection to the “combinatorial mutations” studied by Akhtar–Coates–Galkin–Kasprzyk.


2016 ◽  
Vol 4 ◽  
Author(s):  
RENZO CAVALIERI ◽  
SIMON HAMPE ◽  
HANNAH MARKWIG ◽  
DHRUV RANGANATHAN

We study moduli spaces of rational weighted stable tropical curves, and their connections with Hassett spaces. Given a vector $w$ of weights, the moduli space of tropical $w$-stable curves can be given the structure of a balanced fan if and only if $w$ has only heavy and light entries. In this case, the tropical moduli space can be expressed as the Bergman fan of an explicit graphic matroid. The tropical moduli space can be realized as a geometric tropicalization, and as a Berkovich skeleton, its algebraic counterpart. This builds on previous work of Tevelev, Gibney and Maclagan, and Abramovich, Caporaso and Payne. Finally, we construct the moduli spaces of heavy/light weighted tropical curves as fibre products of unweighted spaces, and explore parallels with the algebraic world.


2016 ◽  
Vol 18 (03) ◽  
pp. 1550043 ◽  
Author(s):  
Andreas Gross

We show that the moduli spaces of irreducible labeled parametrized marked rational curves in toric varieties can be embedded into algebraic tori such that their tropicalizations are the analogous tropical moduli spaces. These embeddings are shown to respect the evaluation morphisms in the sense that evaluation commutes with tropicalization. With this particular setting in mind, we prove a general correspondence theorem for enumerative problems which are defined via “evaluation maps” in both the algebraic and tropical world. Applying this to our motivational example, we show that the tropicalizations of the curves in a given toric variety which intersect the boundary divisors in their interior and with prescribed multiplicities, and pass through an appropriate number of generic points are precisely the tropical curves in the corresponding tropical toric variety satisfying the analogous condition. Moreover, the intersection-theoretically defined multiplicities of the tropical curves are equal to the numbers of algebraic curves tropicalizing to them.


2006 ◽  
Vol 135 (1) ◽  
pp. 1-51 ◽  
Author(s):  
Takeo Nishinou ◽  
Bernd Siebert

2021 ◽  
Vol 9 ◽  
Author(s):  
Jorge Alberto Olarte

Abstract In 2006, Kenyon and Okounkov Kenyon and Okounkov [12] computed the moduli space of Harnack curves of degree d in ${\mathbb {C}\mathbb {P}}^2$ . We generalise their construction to any projective toric surface and show that the moduli space ${\mathcal {H}_\Delta }$ of Harnack curves with Newton polygon $\Delta $ is diffeomorphic to ${\mathbb {R}}^{m-3}\times {\mathbb {R}}_{\geq 0}^{n+g-m}$ , where $\Delta $ has m edges, g interior lattice points and n boundary lattice points. This solves a conjecture of Crétois and Lang. The main result uses abstract tropical curves to construct a compactification of this moduli space where additional points correspond to collections of curves that can be patchworked together to produce a curve in ${\mathcal {H}_\Delta }$ . This compactification has a natural stratification with the same poset as the secondary polytope of $\Delta $ .


Sign in / Sign up

Export Citation Format

Share Document