Low-frequency unsteadiness in shock wave–turbulent boundary layer interaction

2012 ◽  
Vol 699 ◽  
pp. 1-49 ◽  
Author(s):  
Stephan Priebe ◽  
M. Pino Martín

AbstractThe low-frequency unsteadiness is characterized in the direct numerical simulation of a shock wave–turbulent boundary layer interaction generated by a $2{4}^{\ensuremath{\circ} } $ compression ramp in Mach 2.9 flow. Consistent with experimental observations, the shock wave in the simulation undergoes a broadband streamwise oscillation at frequencies approximately two orders of magnitude lower than the characteristic frequency of the energetic turbulent scales in the incoming boundary layer. The statistical relation between the low-frequency shock motion and the upstream and downstream flow is investigated. The shock motion is found to be related to a breathing of the separation bubble and an associated flapping of the separated shear layer. A much weaker statistical relation is found with the incoming boundary layer. In order to further characterize the low-frequency mode in the downstream separated flow, the temporal evolution of the low-pass filtered flow field is investigated. The nature of the velocity and vorticity profiles in the initial part of the interaction is found to change considerably depending on the phase of the low-frequency motion. It is conjectured that these changes are due to an inherent instability in the downstream separated flow, and that this instability is the physical origin of the low-frequency unsteadiness. The low-frequency mode observed here is, in certain aspects, reminiscent of an unstable global mode obtained by linear stability analysis of the mean flow in a reflected shock interaction (Touber & Sandham, Theor. Comput. Fluid Dyn., vol. 23, 2009, pp. 79–107).

2018 ◽  
Vol 848 ◽  
pp. 154-192 ◽  
Author(s):  
David Estruch-Samper ◽  
Gaurav Chandola

This paper presents an experimental study on shock-wave/turbulent-boundary-layer interaction unsteadiness and delves specifically into the shear layer’s role. A range of axisymmetric step-induced interactions is investigated and the scale of separation is altered by over an order of magnitude – mass in the recirculation by two orders – while subjected to constant separation-shock strength. The effect of the separated shear layer on interaction unsteadiness is thus isolated and its kinematics are characterised. Results point at a mechanism whereby the depletion of separated flow is dictated by the state of the large eddy structures at their departure from the bubble. Low-frequency pulsations are found to adjust in response and sustain a reconciling view of an entrainment–recharge process, with both an inherent effect of the upstream boundary layer on shear layer inception and an increase in the mass locally acquired by eddies as they develop downstream.


2017 ◽  
Vol 823 ◽  
pp. 617-657 ◽  
Author(s):  
Vito Pasquariello ◽  
Stefan Hickel ◽  
Nikolaus A. Adams

We analyse the low-frequency dynamics of a high Reynolds number impinging shock-wave/turbulent boundary-layer interaction (SWBLI) with strong mean-flow separation. The flow configuration for our grid-converged large-eddy simulations (LES) reproduces recent experiments for the interaction of a Mach 3 turbulent boundary layer with an impinging shock that nominally deflects the incoming flow by $19.6^{\circ }$. The Reynolds number based on the incoming boundary-layer thickness of $Re_{\unicode[STIX]{x1D6FF}_{0}}\approx 203\times 10^{3}$ is considerably higher than in previous LES studies. The very long integration time of $3805\unicode[STIX]{x1D6FF}_{0}/U_{0}$ allows for an accurate analysis of low-frequency unsteady effects. Experimental wall-pressure measurements are in good agreement with the LES data. Both datasets exhibit the distinct plateau within the separated-flow region of a strong SWBLI. The filtered three-dimensional flow field shows clear evidence of counter-rotating streamwise vortices originating in the proximity of the bubble apex. Contrary to previous numerical results on compression ramp configurations, these Görtler-like vortices are not fixed at a specific spanwise position, but rather undergo a slow motion coupled to the separation-bubble dynamics. Consistent with experimental data, power spectral densities (PSD) of wall-pressure probes exhibit a broadband and very energetic low-frequency component associated with the separation-shock unsteadiness. Sparsity-promoting dynamic mode decompositions (SPDMD) for both spanwise-averaged data and wall-plane snapshots yield a classical and well-known low-frequency breathing mode of the separation bubble, as well as a medium-frequency shedding mode responsible for reflected and reattachment shock corrugation. SPDMD of the two-dimensional skin-friction coefficient further identifies streamwise streaks at low frequencies that cause large-scale flapping of the reattachment line. The PSD and SPDMD results of our impinging SWBLI support the theory that an intrinsic mechanism of the interaction zone is responsible for the low-frequency unsteadiness, in which Görtler-like vortices might be seen as a continuous (coherent) forcing for strong SWBLI.


2010 ◽  
Vol 3 (2) ◽  
Author(s):  
Pavel Polivanov ◽  
Sidorenko Andrey ◽  
Maslov Anatoliy

Experimental study of separated flow in a zone of oblique shock wave / turbulent boundary layer interaction was carried out for Mach number 2 and Reynolds number Reθ = 2,7÷3,5 × 103. Streamwise pressure distribution on the model surface was obtained, Schlieren and oil-flow visualizations were performed. The paper gives detailed data of hot-wire anemometry measurements in upstream boundary layer, interaction and recovery regions. Unsteady nature of separated zone and reflected shock wave was discovered. The effect of side walls on quasi 2D structure of separated flow is described.


Author(s):  
G. A. Gerolymos ◽  
Y. N. Kallas ◽  
K. D. Papailiou

The turbulent normal fluctuation terms have been found from measurements to be very important, when approaching separation, inside the separated flow region, as well as, in the region where a shock wave interacts with a turbulent boundary layer. In the present work correlations are developped on the basis of available experimental results, which relate the normal fluctuation terms, appearing in integral formulations for turbulent boundary layer calculation methods, to mean flow quantities. These correlations are valid, as far as compressible attached or separated turbulent boundary layers are concerned, as well as in the case of a shock wave/turbulent boundary layer interaction which leads to boundary layer separation. Furthermore, correlations are developed for the maxima of the velocity fluctuation terms.


Sign in / Sign up

Export Citation Format

Share Document