Estimating wall-shear-stress fluctuations given an outer region input

2013 ◽  
Vol 715 ◽  
pp. 163-180 ◽  
Author(s):  
Romain Mathis ◽  
Ivan Marusic ◽  
Sergei I. Chernyshenko ◽  
Nicholas Hutchins

AbstractA model for the instantaneous wall-shear-stress distribution is presented for zero-pressure-gradient turbulent boundary layers. The model, based on empirical and theoretical considerations, is able to reconstruct a statistically representative fluctuating wall-shear-stress time-series,${ \tau }_{w}^{\ensuremath{\prime} } (t)$, using only the low-frequency content of the streamwise velocity measured in the logarithmic region, away from the wall. Results, including spectra and second-order moments, show that the model is capable of successfully capturing Reynolds number trends as observed in other studies.

1994 ◽  
Vol 259 ◽  
pp. 191-218 ◽  
Author(s):  
Anthony Wietrzak ◽  
Richard M. Lueptow

Instantaneous streamwise fluctuations of the wall shear stress have been measured using a hot-element probe in a thick axisymmetric turbulent boundary layer on a cylinder aligned parallel to the flow. The measurements were made at a momentum-thickness Reynolds number Rθ = 3050 and a ratio of boundary-layer thickness to cylinder radius of δ/a = 5.7. The ratio of the r.m.s. of the fluctuation to the mean value of the wall shear stress, $\tau_{rms}/\bar{\tau}$, is about 0.32, a value slightly lower than that for recent measurements for flow over a flat plate. The probability density function of the wall shear stress is similar to that for planar wall-bounded flows within experimental error. The power spectral density of the wall shear stress shows that a cylindrical boundary layer contains less energy at lower frequencies and more energy at higher frequencies than other wall-bounded flows. Analysis of simultaneous measurement of the streamwise wall shear stress and the streamwise velocity using VITA and peak detection suggests that transverse curvature has little effect on the near-wall burst–sweep cycle compared to planar wall-bounded flows. The angle of inclination of the structures is similar to that measured for large-scale structures in planar wall-bounded flows. However, measurements of the cross-correlation between the shear stress and the velocity suggest the existence of smaller structures yawed to the axis of the cylinder. The coherence between shear stress and velocity shows a low frequency associated with the inclined structures and a higher frequency associated with the yawed structures. The yawed structures could have an arrowhead or half-arrowhead shape and may be associated with fluid from the outer flow washing over the cylinder.


Stroke ◽  
2014 ◽  
Vol 45 (1) ◽  
pp. 261-264 ◽  
Author(s):  
Vitor Mendes Pereira ◽  
Olivier Brina ◽  
Philippe Bijlenga ◽  
Pierre Bouillot ◽  
Ana Paula Narata ◽  
...  

1977 ◽  
Vol 41 (3) ◽  
pp. 391-399 ◽  
Author(s):  
R J Lutz ◽  
J N Cannon ◽  
K B Bischoff ◽  
R L Dedrick ◽  
R K Stiles ◽  
...  

2009 ◽  
Vol 633 ◽  
pp. 147-158 ◽  
Author(s):  
SEBASTIAN GROSSE ◽  
WOLFGANG SCHRÖDER

The wall-shear stress distribution in turbulent duct flow has been assessed using the micro-pillar shear-stress sensor MPS3. The spatial resolution of the sensor line is 10.8l+(viscous units) and the total field of view of 120l+along the spanwise direction allows to capture characteristic dimensions of the wall-shear stress distribution at sufficiently high resolution. The results show the coexistence of low-shear and high-shear regions representing ‘footprints’ of near-wall coherent structures. The regions of low shear resemble long meandering bands locally interrupted by areas of higher shear stress. Conditional averages of the flow field indicate the existence of nearly streamwise counter-rotating vortices aligned in the streamwise direction. The results further show periods of very strong spanwise wall-shear stress to be related to the occurrence of high streamwise shear regions and momentum transfer towards the wall. These events go along with a spanwise oscillation and a meandering of the low-shear regions.


2016 ◽  
Vol 788 ◽  
pp. 521-548 ◽  
Author(s):  
L. R. Joel Sundstrom ◽  
Berhanu G. Mulu ◽  
Michel J. Cervantes

Wall shear stress measurements employing a hot-film sensor along with laser Doppler velocimetry measurements of the axial and tangential velocity and turbulence profiles in a pulsating turbulent pipe flow are presented. Time-mean and phase-averaged results are derived from measurements performed at pulsation frequencies ${\it\omega}^{+}={\it\omega}{\it\nu}/\bar{u}_{{\it\tau}}^{2}$ over the range of 0.003–0.03, covering the low-frequency, intermediate and quasi-laminar regimes. In addition to the base case of a single pulsation imposed on the mean flow, the study also investigates the flow response when two pulsations are superimposed simultaneously. The measurements from the base case show that, when the pulsation belongs to the quasi-laminar regime, the oscillating flow tends towards a laminar state in which the velocity approaches the purely viscous Stokes solution with a low level of turbulence. For ${\it\omega}^{+}<0.006$, the oscillating flow is turbulent and exhibits a region with a logarithmic velocity distribution and a collapse of the turbulence intensities, similar to the time-averaged counterparts. In the low-frequency regime, the oscillating wall shear stress is shown to be directly proportional to the Stokes length normalized in wall units $l_{s}^{+}~(=\sqrt{2/{\it\omega}^{+}})$, as predicted by quasi-steady theory. The base case measurements are used as a reference when evaluating the data from the double-frequency case and the oscillating quantities are shown to be close to superpositions from the base case. The previously established view that the time-averaged quantities are unaffected by the imposition of small-amplitude pulsed unsteadiness is shown to hold also when two pulsations are superposed on the mean flow.


Sign in / Sign up

Export Citation Format

Share Document