streamwise velocity
Recently Published Documents


TOTAL DOCUMENTS

453
(FIVE YEARS 90)

H-INDEX

51
(FIVE YEARS 6)

Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 72
Author(s):  
Yuxin Zhang ◽  
Shuyang Cao ◽  
Jinxin Cao

For the analysis of the aerodynamic characteristics of the buildings immersed in the atmospheric boundary layer (ABL), it is necessary to generate a turbulence velocity field with similar temporal and special characteristics to the ABL to obtain a reliable result. In this paper, an improved precursor simulation method called the recycling and reshaping method (RRM) is proposed to generate a turbulent boundary layer in an LES model. The laminar inflow is firstly disturbed by the virtual roughness blocks realized by adding drag force term in the momentum equation, then the inflow velocity profile is reshaped every several steps to adjust the streamwise velocity profile in the downstream target area to meet the requirements. The final turbulence field generated by RRM with virtual roughness blocks is in good agreement with the target velocity conditions. Then, the simulation of the wind-induced pressure on an isolated low-rise building surface is carried out, using the generated turbulence boundary layer as inflow. The comparison between numerical results and TPU aerodynamic database shows that the time-averaged wind-induced surface pressure obtained by LES can be considered in good accordance with the measurements over the whole building surface. However, the non-ignorable deviations for the fluctuating pressure result in the flow separation corners still exist.


2021 ◽  
Vol 933 ◽  
Author(s):  
Shengqi Zhang ◽  
Zhenhua Xia ◽  
Shiyi Chen

The analogy between rotating shear flow and thermal convection suggests the existence of plumes, inertial waves and plume currents in plane Poiseuille flow under spanwise rotation. The existence of these flow structures is examined with the results of three-dimensional and two-dimensional three-component direct numerical simulations. The dynamics of plumes near the unstable side is embodied in a truncated exponential distribution of turbulent fluctuations. For large rotation numbers, inertial waves are identified near the stable side, and these can be used to explain the abnormal flow statistics, such as the large root-mean-square of the streamwise velocity fluctuation and the nearly negligible Reynolds shear stress. For small or medium rotation numbers, plumes generated from the unstable side form large-scale plume currents and the patterns of the plume currents show different capabilities in scalar transport.


2021 ◽  
Vol 933 ◽  
Author(s):  
Yongyun Hwang ◽  
Nicholas Hutchins ◽  
Ivan Marusic

The logarithmic dependence of streamwise turbulence intensity has been observed repeatedly in recent experimental and direct numerical simulation data. However, its spectral counterpart, a well-developed $k^{-1}$ spectrum ( $k$ is the spatial wavenumber in a wall-parallel direction), has not been convincingly observed from the same data. In the present study, we revisit the spectrum-based attached eddy model of Perry and co-workers, who proposed the emergence of a $k^{-1}$ spectrum in the inviscid limit, for small but finite $z/\delta$ and for finite Reynolds numbers ( $z$ is the wall-normal coordinate, and $\delta$ is the outer length scale). In the upper logarithmic layer (or inertial sublayer), a reexamination reveals that the intensity of the spectrum must vary with the wall-normal location at order of $z/\delta$ , consistent with the early observation argued with ‘incomplete similarity’. The streamwise turbulence intensity is subsequently calculated, demonstrating that the existence of a well-developed $k^{-1}$ spectrum is not a necessary condition for the approximate logarithmic wall-normal dependence of turbulence intensity – a more general condition is the existence of a premultiplied power-spectral intensity of $O(1)$ for $O(1/\delta ) < k < O(1/z)$ . Furthermore, it is shown that the Townsend–Perry constant must be weakly dependent on the Reynolds number. Finally, the analysis is semi-empirically extended to the lower logarithmic layer (or mesolayer), and a near-wall correction for the turbulence intensity is subsequently proposed. All the predictions of the proposed model and the related analyses/assumptions are validated with high-fidelity experimental data (Samie et al., J. Fluid Mech., vol. 851, 2018, pp. 391–415).


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 453
Author(s):  
Kalpana Devi ◽  
Prashanth Reddy Hanmaiahgari ◽  
Ram Balachandar ◽  
Jaan H. Pu

This research article analyzed the self-preserving behaviour of wall-wake region of a circular pipe mounted horizontally over a flat rigid sand bed in a shallow flow in terms of mean velocity, RSS, and turbulence intensities. The study aims to investigate self-preservation using appropriate length and velocity scales.in addition to that wall-normal distributions of the third-order correlations along the streamwise direction in the wake region are analyzed. An ADV probe was used to record the three-dimensional instantaneous velocities for four different hydraulic and physical conditions corresponding to four cylinder Reynolds numbers. The results revealed that the streamwise velocity deficits, RSS deficits, and turbulence intensities deficits distributions displayed good collapse on a narrow band when they were non-dimensionalized by their respective maximum deficits. The wall-normal distance was non-dimensionalized by the half velocity profile width for velocity distributions, while the half RSS profile width was used in the case of the RSS deficits and turbulence intensities deficits distributions. The results indicate the self-preserving nature of streamwise velocity, RSS, and turbulence intensities in the wall-wake region of the pipe. The third-order correlations distributions indicate that sweep is the dominant bursting event in the near-bed zone. At the same time, ejection is the dominant bursting event in the region above the cylinder height.


2021 ◽  
Vol 932 ◽  
Author(s):  
Pierre Ricco ◽  
Claudia Alvarenga

The development and growth of unsteady three-dimensional vortical disturbances entrained in the entry region of a circular pipe is investigated by asymptotic and numerical methods for Reynolds numbers between $1000$ and $10\,000$ , based on the pipe radius and the bulk velocity. Near the pipe mouth, composite asymptotic solutions describe the dynamics of the oncoming disturbances, revealing how these disturbances are altered by the viscous layer attached to the pipe wall. The perturbation velocity profiles near the pipe mouth are employed as rigorous initial conditions for the boundary-region equations, which describe the flow in the limit of low frequency and large Reynolds number. The disturbance flow is initially primarily present within the base-flow boundary layer in the form of streamwise-elongated vortical structures, i.e. the streamwise velocity component displays an intense algebraic growth, while the cross-flow velocity components decay. Farther downstream the disturbance flow occupies the whole pipe, although the base flow is mostly inviscid in the core. The transient growth and subsequent viscous decay are confined in the entrance region, i.e. where the base flow has not reached the fully developed Poiseuille profile. Increasing the Reynolds number and decreasing the frequency causes more intense perturbations, whereas small azimuthal wavelengths and radial characteristic length scales intensify the viscous dissipation of the disturbance. The azimuthal wavelength that causes the maximum growth is found. The velocity profiles are compared successfully with available experimental data and the theoretical results are helpful to interpret the only direct numerical dataset of a disturbed pipe-entry flow.


2021 ◽  
Vol 931 ◽  
Author(s):  
Joran Rolland

This text presents one of the first successful applications of a rare events sampling method for the study of multistability in a turbulent flow without stochastic energy injection. The trajectories of collapse of turbulence in plane Couette flow, and their probability and rate of occurrence are systematically computed using adaptive multilevel splitting (AMS). The AMS computations are performed in a system of size $L_x\times L_z=24\times 18$ at Reynolds number $R=370$ with an acceleration by a factor ${O}(10)$ with respect to direct numerical simulations (DNS) and in a system of size $L_x\times L_z=36\times 27$ at Reynolds number $R=377$ with an acceleration by a factor ${O}(10^3)$ . The AMS results are validated by a comparison with DNS in the smaller system. Visualisations indicate that turbulence collapses because the self-sustaining process of turbulence fails locally. The streamwise vortices decay first in streamwise elongated holes, leaving streamwise invariant streamwise velocity tubes that experience viscous decay. These holes then extend in the spanwise direction. The examination of more than a thousand trajectories in the $(E_{k,x}=\int u_x^2/2\,\textrm {d}^3\boldsymbol {x},E_{k,y-z}=\int (u_y^2/2+u_z^2/2)\,\textrm {d}^3\boldsymbol {x})$ plane in the smaller system confirms the faster decay of streamwise vortices and shows concentration of trajectories. This hints at an instanton phenomenology in the large size limit. The computation of turning point states, beyond which laminarisation is certain, confirms the hole formation scenario and shows that it is more pronounced in larger systems. Finally, the examination of non-reactive trajectories indicates that both the vortices and the streaks reform concomitantly when the laminar holes close.


Author(s):  
Arthur Hajaali ◽  
Thorsten Stoesser

AbstractThe mean and instantaneous flow separation of two different three-dimensional asymmetric diffusers is analysed using the data of large-eddy simulations. The geometry of both diffusers under investigation is based on the experimental configuration of Cherry et al. (Int J Heat Fluid Flow 29(3):803–811, 2008). The two diffusers feature similar area ratios of $$\mathrm{AR}=4.8$$ AR = 4.8 and $$\mathrm{AR}=4.5$$ AR = 4.5 while exhibiting differing asymmetric expansion ratios of $$\mathrm{AER}=4.5$$ AER = 4.5 or $$\mathrm{AER}=2.0$$ AER = 2.0 , respectively. The Reynolds number based on the averaged inlet velocity and height of the inlet duct is approximately $${\textit{Re}}=10{,}000$$ Re = 10 , 000 . The time-averaged flow in both diffusers in terms of streamwise velocity profiles or the size and location of the mean backflow region are validated using experimental data. In general good agreement of simulated results with the experimental data is found. Further quantification of the flow separation behaviour and unsteadiness using the backflow coefficient reveals the volume portion in which the instantaneous reversal flow evolves. This new approach investigates the cumulative fractional volume occupied by the instantaneous backflow throughout the simulation, a power density spectra analysis of their time series reveals the periodicity of the growth and reduction phases of the flow separation within the diffusers. The dominating turbulent events responsible for the formation of the energy-containing motions including ejection and sweep are examined using the quadrant analysis at various locations. Finally, isourfaces of the Q-criterion visualise the instantaneous flow and the origin and fate of coherent structures in both diffusers.


2021 ◽  
Vol 931 ◽  
Author(s):  
Jenna L. Eppink

Time-resolved particle image velocimetry measurements were performed downstream of a swept backward-facing step. The measurements allow detailed analysis of the interactions between the unsteady instabilities and the stationary crossflow vortices. Different mechanisms are identified that lead to the modulation of the different families of unsteady instabilities that occur downstream of the step. For the low-frequency spanwise-travelling mode, the modulation occurs due to a redistribution of momentum when the instability encounters regions of large spanwise shear of the wall-normal and streamwise velocity. However, the higher-frequency streamwise-travelling instabilities undergo the familiar ‘lift-up’ mechanism when they encounter the regions of large vertical velocity due to the presence of the stationary crossflow vortices. The process leading to large velocity spikes, and ultimately to a laminar breakdown to turbulence, is identified as a constructive interaction between the different unsteady instabilities, coupled with an interaction with the stationary crossflow vortices when the phases align properly.


2021 ◽  
Vol 930 ◽  
Author(s):  
Markus Scherer ◽  
Markus Uhlmann ◽  
Aman G. Kidanemariam ◽  
Michael Krayer

The role of turbulent large-scale streaks or large-scale motions in forming subaqueous sediment ridges on an initially flat sediment bed is investigated with the aid of particle resolved direct numerical simulations of open channel flow at bulk Reynolds numbers up to 9500. The regular arrangement of quasi-streamwise ridges and troughs at a characteristic spanwise spacing between 1 and 1.5 times the mean fluid height is found to be a consequence of the spanwise organisation of turbulence in large-scale streamwise velocity streaks. Ridges predominantly appear in regions of weaker erosion below large-scale low-speed streaks and vice versa for troughs. The interaction between the dynamics of the large-scale streaks in the bulk flow and the evolution of sediment ridges on the sediment bed is best described as ‘top-down’ process, as the arrangement of the sediment bedforms is seen to adapt to changes in the outer flow with a time delay of several bulk time units. The observed ‘top-down’ interaction between the outer flow and the bed agrees fairly well with the conceptual model on causality in canonical channel flows proposed by Jiménez (J. Fluid Mech., vol. 842, 2018, P1, § 5.6). Mean secondary currents of Prandtl's second kind of comparable intensity and lateral spacing are found over developed sediment ridges and in single-phase smooth-wall channels alike in averages over ${O}(10)$ bulk time units. This indicates that the secondary flow commonly observed together with sediment ridges is the statistical footprint of the regularly organised large-scale streaks.


Sign in / Sign up

Export Citation Format

Share Document