Transport equation for the isotropic turbulent energy dissipation rate in the far-wake of a circular cylinder

2015 ◽  
Vol 784 ◽  
pp. 109-129 ◽  
Author(s):  
S. L. Tang ◽  
R. A. Antonia ◽  
L. Djenidi ◽  
Y. Zhou

The transport equation for the isotropic turbulent energy dissipation rate $\overline{{\it\epsilon}}_{iso}$ along the centreline in the far-wake of a circular cylinder is derived by applying the limit at small separations to the two-point energy budget equation. It is found that the imbalance between the production and the destruction of $\overline{{\it\epsilon}}_{iso}$, respectively due to vortex stretching and viscosity, is governed by both the streamwise advection and the lateral turbulent diffusion (the former contributes more to the budget than the latter). This imbalance differs intrinsically from that in other flows, e.g. grid turbulence and the flow along the centreline of a fully developed channel, where either the streamwise advection or the lateral turbulent diffusion of $\overline{{\it\epsilon}}_{iso}$ governs the imbalance. More importantly, the different types of imbalance represent different constraints on the relation between the skewness of the longitudinal velocity derivative $S$ and the destruction coefficient of enstrophy $G$. This results in a non-universal approach of $S$ towards a constant value as the Taylor microscale Reynolds number $R_{{\it\lambda}}$ increases. For the present flow, the magnitude of $S$ decreases initially ($R_{{\it\lambda}}\leqslant 40$) before increasing ($R_{{\it\lambda}}>40$) towards this constant value. The constancy of $S$ at large $R_{{\it\lambda}}$ violates the modified similarity hypothesis introduced by Kolmogorov (J. Fluid Mech., vol. 13, 1962, pp. 82–85) but is consistent with the original similarity hypotheses (Kolmogorov, Dokl. Akad. Nauk SSSR, vol. 30, 1941b, pp. 299–303 (see also 1991 Proc. R. Soc. Lond. A, vol. 434, pp. 9–13)) ($K41$), and, more importantly, with the almost completely self-preserving nature of the plane far-wake.

2015 ◽  
Vol 777 ◽  
pp. 151-177 ◽  
Author(s):  
S. L. Tang ◽  
R. A. Antonia ◽  
L. Djenidi ◽  
H. Abe ◽  
T. Zhou ◽  
...  

The transport equation for the mean turbulent energy dissipation rate $\overline{{\it\epsilon}}$ along the centreline of a fully developed channel flow is derived by applying the limit at small separations to the two-point budget equation. Since the ratio of the isotropic energy dissipation rate to the mean turbulent energy dissipation rate $\overline{{\it\epsilon}}_{iso}/\overline{{\it\epsilon}}$ is sufficiently close to 1 on the centreline, our main focus is on the isotropic form of the transport equation. It is found that the imbalance between the production of $\overline{{\it\epsilon}}$ due to vortex stretching and the destruction of $\overline{{\it\epsilon}}$ caused by the action of viscosity is governed by the diffusion of $\overline{{\it\epsilon}}$ by the wall-normal velocity fluctuation. This imbalance is intrinsically different from the advection-driven imbalance in decaying-type flows, such as grid turbulence, jets and wakes. In effect, the different types of imbalance represent different constraints on the relation between the skewness of the longitudinal velocity derivative $S_{1,1}$ and the destruction coefficient $G$ of enstrophy in different flows, thus resulting in non-universal approaches of $S_{1,1}$ towards a constant value as the Taylor microscale Reynolds number, $R_{{\it\lambda}}$, increases. For example, the approach is slower for the measured values of $S_{1,1}$ along either the channel or pipe centreline than along the axis in the self-preserving region of a round jet. The data for $S_{1,1}$ collected in different flows strongly suggest that, in each flow, the magnitude of $S_{1,1}$ is bounded, the value being slightly larger than 0.5.


1995 ◽  
Author(s):  
Viktor A. Banakh ◽  
Natalia N. Kerkis ◽  
Igor N. Smalikho ◽  
Friedrich Koepp ◽  
Christian Werner

Sign in / Sign up

Export Citation Format

Share Document