far wake
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 34)

H-INDEX

25
(FIVE YEARS 4)

2022 ◽  
Vol 933 ◽  
Author(s):  
Kristin N. Travis ◽  
Sarah E. Smith ◽  
Laure Vignal ◽  
Henda Djeridi ◽  
Mickaël Bourgoin ◽  
...  

This study presents the findings of a wind tunnel experiment investigating the behaviour of micrometric inertial particles with Stokes numbers around unity in the turbulent wake of a stationary porous disk. Various concentrations $\varPhi _{v}\in ([6-19] \times 10^{-6})$ of poly-disperse water droplets (average diameter 40–50  $\mathrm {\mu }$ m) are compared with sub-inertial tracer particles. Hot-wire anemometry, phase Doppler interferometry and particle image velocimetry were implemented in the near- and far-wake regions to study the complex dynamics of such particles. Quadrant analysis is used to explore the shear effects of the particle wake interaction. Turbulence statistics and particle size distributions reveal distinct differences in the structure of the wake when inertial particles are present in the flow. Additionally, there are different structures in the near and far wake regions and structures change with particle volume fraction.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 404
Author(s):  
Charles Patrick Bounds ◽  
Sudhan Rajasekar ◽  
Mesbah Uddin

This paper presents a study on the flow dynamics involving vehicle interactions. In order to do so, this study first explores aerodynamic prediction capabilities of popular turbulence models used in computational fluid dynamics simulations involving tandem objects and thus, ultimately presents a framework for CFD simulations of ground vehicle platooning using a realistic vehicle model, DrivAer. Considering the availability of experimental data, the simulation methodology is first developed using a tandem arrangement of surface-mounted cubes which requires an understanding on the role of turbulence models and the impacts of the associated turbulence model closure coefficients on the prediction veracity. It was observed that the prediction accuracy of the SST k−ω turbulence model can be significantly improved through the use of a combination of modified values for the closure coefficients. Additionally, the initial validation studies reveal the inability of the Unsteady Reynolds-Averaged Navier-Stokes (URANS) approach to resolve the far wake, and its frailty in simulating tandem body interactions. The Improved Delayed Detached Eddy Simulations (IDDES) approach can resolve the wakes with a reasonable accuracy. The validated simulation methodology is then applied to the fastback DrivAer model at different longitudinal spacing. The results show that, as the longitudinal spacing is reduced, the trailing car’s drag is increased while the leading car’s drag is decreased which supports prior explanations of vortex impingement as the reason for drag changes. Additionally, unlike the case of platooning involving Ahmed bodies, the trailing model drag does not return to an isolated state value at a two car-length separation. However, the impact of the resolution of the far wake of a detailed DrivAer model, and its implication on the CFD characterization of vehicle interaction aerodynamics need further investigations.


2021 ◽  
Vol 6 (6) ◽  
pp. 1413-1425
Author(s):  
David H. Wood ◽  
Eric J. Limacher

Abstract. The flow upwind of an energy-extracting horizontal-axis wind turbine expands as it approaches the rotor, and the expansion continues in the vorticity-bearing wake behind the rotor. The upwind expansion has long been known to influence the axial momentum equation through the axial component of the pressure, although the extent of the influence has not been quantified. Starting with the impulse analysis of Limacher and Wood (2020), but making no further use of impulse techniques, we derive its exact expression when the rotor is a circumferentially uniform disc. This expression, which depends on the radial velocity and the axial induction factor, is added to the thrust equation containing the pressure on the back of the disc. Removing the pressure to obtain a practically useful equation shows the axial induction in the far wake is twice the value at the rotor only at high tip speed ratio and only if the relationship between vortex pitch and axial induction in non-expanding flow carries over to the expanding case. At high tip speed ratio, we assume that the expanding wake approaches the Joukowsky model of a hub vortex on the axis of rotation and tip vortices originating from each blade. The additional assumption that the helical tip vortices have constant pitch allows a semi-analytic treatment of their effect on the rotor flow. Expansion modifies the relation between the pitch and induced axial velocity so that the far-wake area and induction are significantly less than twice the values at the rotor. There is a moderate decrease – about 6 % – in the power production, and a similar size error occurs in the familiar axial momentum equation involving the axial velocity.


2021 ◽  
Vol 6 (6) ◽  
pp. 1341-1361
Author(s):  
Frederik Berger ◽  
David Onnen ◽  
Gerard Schepers ◽  
Martin Kühn

Abstract. The dynamic inflow effect denotes the unsteady aerodynamic response to fast changes in rotor loading due to a gradual adaption of the wake. This does lead to load overshoots. The objective of the paper was to increase the understanding of that effect based on pitch step experiments on a 1.8 m diameter model wind turbine, which are performed in the large open jet wind tunnel of ForWind – University of Oldenburg. The flow in the rotor plane is measured with a 2D laser Doppler anemometer, and the dynamic wake induction factor transients in axial and tangential direction are extracted. Further, integral load measurements with strain gauges and hot-wire measurements in the near and close far wake are performed. The results show a clear gradual decay of the axial induction factors after a pitch step, giving the first direct experimental evidence of dynamic inflow due to pitch steps. Two engineering models are fitted to the induction factor transients to further investigate the relevant time constants of the dynamic inflow process. The radial dependency of the axial induction time constants as well as the dependency on the pitch direction is discussed. It is confirmed that the nature of the dynamic inflow decay is better described by two rather than only one time constant. The dynamic changes in wake radius are connected to the radial dependency of the axial induction transients. In conclusion, the comparative discussion of inductions, wake deployment and loads facilitate an improved physical understanding of the dynamic inflow process for wind turbines. Furthermore, these measurements provide a new detailed validation case for dynamic inflow models and other types of simulations.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4494
Author(s):  
De-Zhi Wei ◽  
Ni-Na Wang ◽  
De-Cheng Wan

Yaw-based wake steering control is a potential way to improve wind plant overall performance. For its engineering application, it is crucial to accurately predict the turbine wakes under various yawed conditions within a short time. In this work, a two-dimensional analytical model is proposed for far wake modeling under yawed conditions by taking the self-similarity assumption for the streamwise velocity deficit and skewness angle at hub height. The proposed model can be applied to predict the wake center trajectory, streamwise velocity, and transverse velocity in the far-wake region downstream of a yawed turbine. For validation purposes, predictions by the newly proposed model are compared to wind tunnel measurements and large-eddy simulation data. The results show that the proposed model has significantly high accuracy and outperforms other common wake models. More importantly, the equations of the new proposed model are simple, the wake growth rate is the only parameter to be specified, which makes the model easy to be used in practice.


2021 ◽  
Author(s):  
Ravi Kumar ◽  
Ojing Siram ◽  
Niranjan Sahoo ◽  
Ujjwal K. Saha

Abstract Knowledge of wind energy harvesting is an ever-growing process, and to meet the enormous energy demand, wind farms shall have a significant role. An efficient wind farm is required to have an in-depth knowledge of turbine wake characteristics. This article presents an experimental investigation of the wake expansion process defined by the transition of wake from near to far wake regimes. The study has been performed on models horizontal axis wind turbine (HAWT) composed of NACA 0012 profile, keeping the ratio of root chord to tip chord length is 5:2. A constant temperature hot-wire anemometer (HWA) has been used to examine the rotor’s fluctuating flow field. The subsequent time-averaged normalizes velocity deficit, and vortex shedding frequency are used for the flow characteristics. Time-averaged velocity deficit measurement suggests a drop in upstream velocity by 20–30% within the vicinity of rotor tip downstream of the rotor plane. The study shows that flow recovery is initiating from the near wake regime around 1.08R. Further, the spectral findings indicates the low frequency dominance within 4R (R being the rotor radius), and the Strouhal number falls close to 0.23. The present wind tunnel study on wake characteristics throws significant insight into further enhancing the WT wake modeling.


2021 ◽  
Author(s):  
Frederik Berger ◽  
David Onnen ◽  
J. Gerard Schepers ◽  
Martin Kühn

Abstract. The dynamic inflow effect denotes the unsteady aerodynamic response to fast changes in rotor loading due to a gradual adaption of the wake. This does lead to load overshoots. The objective of the paper was to increase the understanding of that effect based on pitch step experiments on a 1.8 m diameter model wind turbine, which we performed in the large open jet wind tunnel of ForWind – University of Oldenburg. We measured the flow in the rotor plane with a 2D Laser Doppler Anemometer and were able to extract the dynamic wake induction factor transients in axial and tangential direction. Further, integral load measurements with strain gauges and hot wire measurements in the near and close far wake were performed. Our results show a clear gradual decay of the axial induction factors after a pitch step, giving the first direct experimental evidence of dynamic inflow due to pitch steps. We fitted two engineering models to the induction factor transients to further investigate the relevant time constants of the dynamic inflow process.We discussed the radial dependency of the axial induction time constants as well as the dependency on the pitch direction. We confirmed that the nature of the dynamic inflow decay is better described by two rather than only one time constant. The dynamic changes in wake radius were connected to the radial dependency of the axial induction transients. In conclusion, the comparative discussion of inductions, wake deployment and loads facilitated the improved physical understanding of the dynamic inflow process for wind turbines. Furthermore, these measurements provide a new detailed validation case for dynamic inflow models and other types of simulations.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3641
Author(s):  
Sidaard Gunasekaran ◽  
Aaron Altman

Correlations were found between the aerodynamic efficiency and the mean and fluctuating quantities in the far wake of a wall-to-wall SD7003 model and an AR 4 flat plate. This correlation was described algebraically by modeling the wake signature as a function of wing geometry and initial conditions. The model was benchmarked against experimental results to elicit the wing performance as a function of angle of attack by interrogating the wake. In these algebraic models, the drag coefficient along with other initial conditions of the turbulent generator (either airfoil or wing) were used to reconstruct the Reynolds Stress distribution and the momentum deficit distribution in the turbulent wake. Experiments were undertaken at the United States Air Force Research Labs Horizontal Free Surface Water Tunnel (AFRL/HFWT). These experiments build on previous results obtained at the University of Dayton Low Speed Wind Tunnel (UD-LSWT) on a cylinder, an AR 7 SD7062 wing, and a small remote control twin motor aircraft. The Reynolds stress and the momentum deficit of the turbulent generators were experimentally determined using Particle Image Velocimetry (PIV) with a minimum of 1000 image pairs averaged at each condition. The variation of an empirical factor (γ) used to match the Reynolds stress and momentum deficit distributions showed striking correlation to the variation of drag and aerodynamic efficiency of the turbulent generator. This correlation suggests that the wing performance information is preserved in the free shear layer 10 chord lengths downstream of the trailing edge (TE) of the wing irrespective of the dimensionality of the flow.


2021 ◽  
Author(s):  
David Wood ◽  
Eric Limacher

Abstract. Upwind of an energy-extracting horizontal-axis wind turbine, the flow expands as it approaches the rotor, and the expansion continues in the vorticity-bearing wake behind the rotor. The upwind expansion has long been known to influence the axial momentum equation through the axial component of the pressure, although the extent of the influence has not been quantified. Starting with the impulse analysis of Limacher & Wood (2020), but making no further use of impulse techniques, we demonstrate that the expansion redistributes momentum from the external flow to the wake and derive its exact expression when the rotor is circumferentially uniform. This expression, which depends on the radial velocity and the axial induction factor, is added to the thrust equation containing the pressure on the back of the disk. Removing the pressure to obtain a practically useful equation shows the axial induction in the far-wake is twice the value at the rotor only at high tip speed ratio and only if the relationship between vortex pitch and axial induction in non-expanding flow carries over to the expanding case. At high tip speed ratio, we assume that the expanding wake approaches the "Joukowsky'' model of a hub vortex on the axis of rotation and tip vortices originating from each blade. The additional assumption that the helical tip vortices have constant pitch, allows a semi-analytic treatment of their effect on the rotor flow. Expansion modifies the relation between the pitch and induced axial velocity so that the far-wake area and induction are significantly less than twice the values at the rotor. There is a moderate decrease – about 6 % – in the power production and a similar size error occurs in the familiar axial momentum equation involving the axial velocity.


Sign in / Sign up

Export Citation Format

Share Document