Why spheroids orient preferentially in near-wall turbulence

2016 ◽  
Vol 807 ◽  
pp. 221-234 ◽  
Author(s):  
Lihao Zhao ◽  
Helge I. Andersson

Non-spherical particles are known to orient preferentially in near-wall turbulence, but rod-like and disk-like particles align themselves differently relative to the mean vorticity direction. To uncover the mechanism that gives rise to such preferential particle orientations in anisotropic turbulence, Lagrangian statistics from a channel-flow simulation have been analysed. Ni et al. (J. Fluid Mech., vol. 743, 2014, R3) showed that the fluid vorticity and long rods independently aligned with the Lagrangian fluid stretching direction in isotropic turbulence. Following their approach, we deduced the left Cauchy–Green strain tensor along Lagrangian trajectories of tracer spheroids in channel-flow turbulence. The results showed that the alignment of the fluid vorticity vector with the strongest Lagrangian stretching direction in the channel centre, just as in isotropic turbulence, vanished in the vicinity of the walls. The analysis revealed that the directions of the strongest Lagrangian stretching and compression in near-wall turbulence are in the streamwise and wall-normal directions, respectively. All over the channel we found that the symmetry axis of prolate spheroids aligned with the direction of strongest Lagrangian stretching whereas oblate spheroids oriented with the direction of Lagrangian compression. This finding is apparently universal since the same trends were found in highly anisotropic wall turbulence as well as in isotropic turbulence. Contrary to the prevailing view, we have shown for the first time that the preferential orientation of the symmetry axis of long rods in the streamwise direction and of flat disks in the wall-normal direction is caused by Lagrangian stretching and not by fluid rotation. This finding fills a gap in our understanding of orientation and rotation of tracer spheroids in anisotropic wall turbulence.

2001 ◽  
Vol 439 ◽  
pp. 217-253 ◽  
Author(s):  
SEDAT F. TARDU

The effect of time-periodical blowing through a spanwise slot on the near-wall turbulence characteristics is investigated. The blowing velocity changes in a cyclic manner from 0 to 5 wall units. The frequency of the oscillations is nearly equal to the median frequency of the near-wall turbulence. The measurements of the wall shear stress and the streamwise velocity are reported and discussed. The flow field near the blowing slot is partly relaminarized during the acceleration phase of the injection velocity which extends 40 wall units downstream. The imposed unsteadiness is confined to the buffer layer, and the time-mean structural parameters under unsteady blowing are found to be close to those of isotropic turbulence in this region. The relaminarized phase is unstable and gives way to a coherent spanwise structure that increases the shear from 80 to 300 wall units downstream of the slot in a predictable way. This phenomenon is strongly imposed-frequency dependent.


2011 ◽  
Vol 667 ◽  
pp. 1-37 ◽  
Author(s):  
JIARONG HONG ◽  
JOSEPH KATZ ◽  
MICHAEL P. SCHULTZ

Utilizing an optically index-matched facility and high-resolution particle image velocimetry measurements, this paper examines flow structure and turbulence in a rough-wall channel flow for Reτ in the 3520–5360 range. The scales of pyramidal roughness elements satisfy the ‘well-characterized’ flow conditions, with h/k ≈ 50 and k+ = 60 ~ 100, where h is half height of the channel and k is the roughness height. The near-wall turbulence measurements are sensitive to spatial resolution, and vary with Reynolds number. Spatial variations in the mean flow, Reynolds stresses, as well as the turbulent kinetic energy (TKE) production and dissipation rates are confined to y < 2k. All the Reynolds stress components have local maxima at slightly higher elevations, but the streamwise-normal component increases rapidly at y < k, peaking at the top of the pyramids. The TKE production and dissipation rates along with turbulence transport also peak near the wall. The spatial energy and shear spectra show an increasing contribution of large-scale motions and a diminishing role of small motions with increasing distance from the wall. As the spectra steepen at low wavenumbers, they flatten and develop bumps in wavenumbers corresponding to k − 3k, which fall in the dissipation range. Instantaneous realizations show that roughness-scale eddies are generated near the wall, and lifted up rapidly by large-scale structures that populate the outer layer. A linear stochastic estimation-based analysis shows that the latter share common features with hairpin packets. This process floods the outer layer with roughness-scale eddies, in addition to those generated by the energy-cascading process. Consequently, although the imprints of roughness diminish in the outer-layer Reynolds stresses, consistent with the wall similarity hypothesis, the small-scale turbulence contains a clear roughness signature across the entire channel.


2014 ◽  
Vol 743 ◽  
pp. 606-635 ◽  
Author(s):  
L. Agostini ◽  
E. Touber ◽  
M. A. Leschziner

AbstractA direct-numerical-simulation-based study is presented, which focuses on the response of near-wall turbulence and skin friction to the imposition of an oscillatory spanwise wall motion in channel flow. One point of contrast to earlier studies is the relatively high Reynolds number of the flow, namely $Re_\tau =1000$ in the unforced baseline flow. Another is the focus on transients in the drag that are in the form of moderate oscillatory variations in the skin friction and near-wall turbulence around the low-drag state at a sub-optimal actuation period. These conditions allow phase-averaged statistics to be extracted, during the periodic drag decrease and rise, that shed light on the interaction between turbulence and the unsteady Stokes strain. Results are presented for, among others, the phase-averaged second moments of stochastic fluctuations and their budgets, enstrophy components and joint probability density functions. The study identifies velocity skewness – the wall-normal derivative of the angle of the velocity vector – as playing a significant role in the streak-damping process during the drag-reduction phase. Furthermore, the phase-wise asymmetry in the skewness is identified as the source of a distinctive hysteresis in all properties, wherein the drag decrease progresses over a longer proportion of the actuation cycle than the drag increase. This feature, coupled with the fact that the streak-generation time scale limits the ability of the streaks to re-establish themselves during the low-skewness phase when the actuation period is sufficiently short, is proposed to drive the drag-reduction process. The observations in the study thus augment a previously identified mechanism proposed by two of the present authors, in which the drag-reduction process was linked to the rate of change in the Stokes strain in the upper region of the viscous sublayer where the streaks are strongest. Furthermore, an examination of the stochastic-stress budgets and the enstrophy lead to conclusions contrasting with those recently proposed by other authors, according to which the drag-reduction process is linked to increases in enstrophy and turbulence-energy dissipation. It is shown, both for the transient drag-reduction phase and the periodic drag fluctuations around the low-drag state, that the drag decrease/increase phases are correlated with decreases/increases in both enstrophy and dissipation.


Sign in / Sign up

Export Citation Format

Share Document